11 resultados para Gabor Tompa

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

着色和纹理合成是图形图像中的两类基本研究课题。前者需根据用户定义的彩色笔触信息,自动对黑白照片、电影或者漫画染上颜色;后者则需根据用户输入的样本纹理,经计算得出与样本纹理视觉上近似的结果纹理。这两类课题都有广泛的应用背景。如着色常常用于给经典的黑白电影或者照片自动上色,解决现在的染色工序中存在的需要大量人工交互的难题;而纹理合成常用于电影和电子游戏的地形地貌、织物、头发等等纹理的自动生成。 这两大类问题都需要分析纹理特征,并且依赖于分析结果的准确性。Gabor小波滤波器与人眼的视觉感受野相当吻合,用它来分析纹理得到的结果比较精确。鉴于此,本文把Gabor小波应用到了着色问题和纹理合成中。对于着色问题,本文用基于Gabor小波的特征向量重新定义邻居关系,然后用最优化方法迭代地对照片和卡通染色。相比以往的算法,本算法具有用户交互少、效果好、算法简单稳健的优点,并且算法允许用户逐步地添加色彩细节。对于纹理合成,本文用基于Gabor小波的特征向量来预计算K-Coherence候选集,提高了K-Coherence算法的准确性,从而改进了纹理合成的最终效果。 本文提出的算法是天然并行的,因而可利用GPU加速,做到实时计算。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

为解决基于数字水印的无线多媒体消息版权管理系统对提取后水印标识的自动识别问题,在充分考虑多媒体消息在传播中可能遭受攻击的基础上,提出一种基于Gabor小波特征的标识确认方案.该方案利用这类小波函数确定的滤波器适合局部分析和多方向多尺度分析的特点,提取与水印版权标识结构信息相关的统计量,形成特征集向量,通过特征集的距离比较,在小尺寸水印质量退化情况下,实现了对水印标识的识别.分析和实验表明,该方案能够满足无线多媒体消息版权管理的需求,并且在文中分析的情况下,设备的自动识别精度可以达到95%以上,较好地支持了对无线多媒体消息的版权管理.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

为了解决黑白图像自动染色的难题,提出了一种基于Gabor小波的渐进式着色算法。该算法首先使用Gabor小波对黑白图像的纹理特征进行分析,在此基础上,根据纹理特征差异重新定义像素的邻居关系,最后利用最优化方法对染色问题进行迭代求解。该算法主要的创新点是交互操作少,并允许用户逐步添加色彩细节。同时该算法还是天然并行的,能够利用图形处理器(GPU)进行实时计算。为该算法和当今流行的着色算法做了效果对比,并且进行了效率分析,实验结果表明了该算法的可用性和效率。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正> 一、前言 在电子计算机十分发达的今天,流体测量技术仍然是流体力学发展最基本、最活跃的因素。流场显示中的全息照相方法是流体测量技术中较新和发展非常快的方法之一。 全息照相概念于1948年由英国D.Gabor提出,并由很困难的实验所证明。由于技术上的困难,这个课题停顿了十多年,未引起人们的注意。1962年美国

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the digital all-sky imager (ASI) emergence in aurora research, millions of images are captured annually. However, only a fraction of which can be actually used. To address the problem incurred by low efficient manual processing, an integrated image analysis and retrieval system is developed. For precisely representing aurora image, macroscopic and microscopic features are combined to describe aurora texture. To reduce the feature dimensionality of the huge dataset, a modified local binary pattern (LBP) called ALBP is proposed to depict the microscopic texture, and scale-invariant Gabor and orientation-invariant Gabor are employed to extract the macroscopic texture. A physical property of aurora is inducted as region features to bridge the gap between the low-level visual features and high-level semantic description. The experiments results demonstrate that the ALBP method achieves high classification rate and low computational complexity. The retrieval simulation results show that the developed retrieval system is efficient for huge dataset. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

实时目标跟踪是模式识别、图像处理、计算机视觉、武器制导等领域的重要课题,而且在工业、军事和科学研究方面都具有广泛的应用。相关跟踪是目前使用最广泛的跟踪算法。但传统相关跟踪方法以假设目标仅发生平移运动为前提,当目标仅发生平移时能够获得理想的跟踪效果。但当目标尺度和灰度变化时,这种算法往往表现出一定的不适应性。 差值分解(Difference Decomposition)最早于1997年Michael Gleicher提出,并被应用于目标跟踪,图像配准等领域。由于具有计算速度快,对目标变化适应性好等特点,被认为是目标跟踪中的一种有效的方法。本文在跟踪算法中引入了这种方法,力图解决传统相关跟踪所出现的上述问题。在研究差值分解(Difference Decomposition)理论的同时,对使用该方法在实际应用中遇到的问题进行了深入的分析和大量的实验。主要包括:算法应用中一些参数的选择对算法的影响,算法迭代中参数更新的方法等。并在应用中发现了算法的不足之处,提出了相应的改进方法。 同时,介绍了TI DM642硬件处理平台的基本构成和性能指标。作为正常算法分析的重要组成部分,对差值分解算法在该硬件处理平台上通过软件编程方式实现的复杂度进行了详细的分析与论证。 最后本文构建了一个比较完整的跟踪流程,将改进后的跟踪算法应用到所建立的跟踪流程中。采用工具对算法进行了开发,并使用序列图像对算法进行了跟踪仿真实验,为算法将来的实际应用奠定了良好的基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文研究的主要内容为基于小波多尺度特性的序列图像目标跟踪技术。目标跟踪作为一个在军事、工业和科学研究方面有着广泛应用背景的研究领域,一直以来吸引了大批国内外学者。由于小波变换具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,使得基于小波变换的目标跟踪算法具有传统算法无法比拟的优势。针对目标跟踪技术的研究现状和存在问题,本文着重从目标分割和特征检测与匹配两个角度对基于小波变换的几种新的目标跟踪方法进行了研究。 1. 采用基于多尺度Gabor小波的特征点检测算法对序列图像进行跟踪。借助图像的金字塔变换得到多尺度的Gabor小波特征图像,并对特征图像进行特征点检测,提取对图像变换具有鲁棒性的特征。针对两种特征检测方案,提出不同的特征匹配准则,按照分层匹配的策略由粗到精逐步定位目标的准确位置,具有较快的搜索速度。 2. 采用多尺度小波函数所提取的相位一致性特征进行基于目标分割和基于角点特征的跟踪。 对目标图像进行相位一致性检测,得到一个具有光照不变性的无量纲特征量—相位一致系数。利用相位一致性检测的这种特性,针对孤立目标的情况,提出了两种自适应目标分割和跟踪的算法。基于区域增长的目标分割算法利用从相位一致图像中找到的对比度最大点及其法线方向两边的灰度分布确定目标和背景的种子像素,进行自适应目标分割。基于相位一致性检测的目标分割算法只需确定一个阈值即可利用相位一致特征图像的方向性,依据目标在不同方向响应的不同将目标和背景区分开,适应于复杂纹理背景中的目标分割。最后,分别将两种算法所得的分割结果向水平和垂直方向投影即可确定各自的质心位置,实现自适应的质心跟踪。 进一步提取相位一致性图像的最小矩特征就能得到目标的角点信息。文中用实验验证了此方法检测到角点的综合性能。在此基础上,提出了利用单演相位差进行角点匹配跟踪的算法,并将其同基于灰度相关的匹配算法进行了对比,证明了本算法能够检测出更多准确匹配的角点、减少误匹配,同时具有较小的匹配运算量。 对以上提出的几种目标跟踪算法进行了大量的仿真实验,实验结果表明,这几种方法均取得了较好的跟踪效果,能够实现稳定、精确的跟踪。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.