216 resultados para GENERAL PLANAR ELECTRODES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A novel device of multiple cylinder microelectrodes coupled with a parallel planar electrode was proposed. The feedback diffusion current at this device was studied using bilinear transformation of coordinates in the diffusion space, where lines of mass flux and equiconcentration are represented by orthogonal circular functions. The derived expression for the steady-state current shows that as the gap between cylindrical microelectrodes and planar electrode diminishes, greatly enhanced currents can be obtained with high signal-to-noise ratio. Other important geometrical parameters such as distance between adjacent microcylinders, cylinder radius, and number of microcylinders were also discussed in detail.
Resumo:
We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.
Resumo:
We investigate a planar ion chip design with a two-dimensional array of linear ion traps for the scalable quantum information processor. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate, a combination of appropriate rf and DC potentials are applied to them for stable ion confinement, and the trap axes are located above the surface at a distance controlled by the electrodes' lateral extent and the substrate's height as discussed. The potential distributions are calculated using static electric field qualitatively. This architecture is conceptually simple and many current microfabrication techniques are feasible for the basic structure. It may provide a promising route for scalable quantum computers.
Resumo:
Adsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)(n) films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O-2; as a result, they are more attractive compared to (CNT/polyelectrolyte)(n) and (NP/polyelectrolyte)(n) films because of their multifunctionality.
Resumo:
The preparative procedure of a kind of phospholipid/alkanethiol bilayers on a planar macroelectrode was copied to the as-prepared gold colloid electrodes. The electrochemical and spectral results show that the bilayers on colloid electrodes are interdigited, which are different from their 2-D counterparts on a planar macroelectrode.
Resumo:
(3-Aminopropyl)trimethoxysilane (APTMS)-supported gold colloid electrode was constructed by virtue of a recently developed solution-based self-assembly strategy. The preparing procedure of 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers on a planar macroelectrode (Bharathi et al. Langmuir 2001, 17, 7468) was copied to the as-prepared colloid electrode. The optical spectra, atomic force microscopy, and electrochemistry demonstrate successful copy of the multilayer system on a macroelectrode to the as-prepared colloid electrode. Remarkably, it was found that multilayer growth is highly selective to the nanoscale sites where gold nanoparticles are immobilized, and multilayer growth does not take place on the sites without nanoparticles. Interestingly, a preliminary electrochemical investigation indicates that electrochemical properties of multilayers systems on the colloid electrode are different from their counterparts on a planar macroelectrode, which might be due to high curvature effects of the gold nanoparticles. This indicates a different motif of multilayers on the colloid electrode from that on a planar macroelectrode.
Resumo:
A general strategy has been developed for fabrication of ultrathin monolayer and multilayer composite films composed of nearly all kinds of polyoxometalates (POMs), including isopolyanions (IPAs), and heteropolyanions (HPAs). It involves stepwise adsorption between the anionic POMs and a cationic polymer on alkanethiol (cysteamine and 3-mercaptopropionic acid) self-assembled monolayers (SAMs) based on electrostatic interaction. Here a Keggin-type HPA SiMo11VO405- was chosen as a main representative to elucidate, in detail, the fabrication and characterization of the as-prepared composite films. A novel electrochemical growth method we developed for film formation involves cyclic potential sweeps over a suitable potential range in modifier solutions. It was comparatively studied with a commonly used method of immersion growth, i.e., alternately dipping a substrate into modifier solutions. Growth processes and structural characteristics of the composite films are characterized in detail by cyclic voltammetry, UV-vis spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), micro-Fourier transform infrared reflection-absorption spectroscopy (FTIR-RA), and electrochemical quartz crystal microbalance (EQCM). The electrochemical growth is proven to be more advantageous than the immersion growth. The composite films exhibit well-defined surface waves characteristic of the HPAs' redox reactions. In addition, the composite films by the electrochemical growth show a uniform structure and an excellent stability. Ion motions accompanying the redox processes of SiMo11VO405- in multilayer films are examined by in situ time-resolved EQCM and some results are first reported. The strategy used here has been successfully popularized to IPAs as well as other HPAs no matter what structure and composition they have.
Resumo:
A general characteristic of the electrochemical process coupling with a homogeneous catalytic reaction at an ultramicroelectrode under steady state is described. It was found that the electrochemical process coupling with homogeneous catalytic reaction has a similar steady state voltammetric wave at an ultramicroelectrode with arbitrary geometry. A method of determination for the kinetic constant of homogeneous catalytic reaction at an ultramicroelectrode with arbitrary geometry is proposed.
Resumo:
The Research on Electroanalytical chemistry in China started mainly from the beginning of new China in 1949. It has already good basis and development nowadays. A review with references to the end of seventies has been published in "Reviews in Analytical Chemistry" 1) and in a book titled "Fifty years of Chinese Chemistry" edited by the Chinese Chemical Society in 1985 2). Since then more than thousand papers have been published, and it is impossible and also not necessary to describe all of them. This review only deals with the main progress of electroanalytical chemistry in China in recent years. Some new developed methodologies will be reviewed by S. Dong in the next article.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.
Resumo:
A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.
Resumo:
In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs' parameter on the pull-off process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle (pi/2 is the maximum value), smaller a/R or larger nondimensional parameter value of Delta gamma/E*R. Relations among the contact half width, the external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the present paper as basic solutions are helpful and applicable for experimenters and engineers.
Resumo:
Generalized planar fault energy (GPFE) curves have been used to predict partial-dislocation-mediated processes in nanocrystalline materials, but their validity has not been evaluated experimentally. We report experimental observations of a large quantity of both stacking faults and twins in nc Ni deformed at relatively low stresses in a tensile test. The experimental findings indicate that the GPFE curves can reasonably explain the formation of stacking faults, but they alone were not able to adequately predict the propensity of deformation twinning.
Resumo:
A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary configuration in microgravity environment under the assumption that the surface tension is high enough to keep the bubbles spherical. The two bubbles are dr
Resumo:
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress,intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.