148 resultados para GENERAL CORRELATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.
Resumo:
The typical MEMS fabrication of micro evaporators ensures the perfect smooth wall surface that is lack of nucleation sites, significantly decreasing the heat transfer coefficients compared with miniature evaporators fabricated using copper or stainless steel. In the present paper, we performed the boiling heat transfer experiment in silicon triangular microchannel heat sink over a wide parameter range for 102 runs. Acetone was used as the working fluid. The measured boiling heat transfer coefficients versus the local vapor mass qualities are compared with the classical Chen’s correlation and other correlations for macro and miniature capillary tubes. It is found that most of these correlations significantly over-predict the measured heat transfer coefficients. New correlations are given. There are many reasons for such deviations. The major reason is coming from the perfect smooth silicon surface that lowers the heat transfer performances. New theory is recommended for the silicon microchannel heat sink that should be different from metallic capillary tubes.
Resumo:
This thesis study the problem of work group effectiveness and group job design according to extensive literature investigation and the analysis of realistic background. The whole research consists of four parts: (1) The evaluation of work group effectiveness, the aim is to search to criteria that can describe and analysis work group, and explore the cognitive dimensions of effectiveness of Chinese subjects; (2) The study on the relationship between group job characteristic and effectiveness, the aim is to find the general correlation between work group characteristic and effectiveness, and try to search the most important core variable; (3) The study on the preference for the way of group work; (4) The study of the relationship between group composition and group effectiveness, try to examine how different approaches of personnel selection influence work results. The results indicate: (1) The evaluation of group effectiveness mainly consists of two dimensions: performance and the employee's attitude and feelings toward the group, so we can use these two dimensions and corresponding criteria as the standard of effectiveness evaluation. (2) According to the analysis of related literature, we can determine work group characteristic from five aspects: job design, the interdependence among members, group composition, organizational background, group process. (3) Experimental study find that different group job characteristics have different relationship models with effectiveness criteria. Job design, the interdependence among group members, group composition have significant correlation relationships with two kinds of effectiveness criteria; organizational background mainly has relationships with satisfaction criteria; group process mainly has relationships with performance criteria. (4) The choice for people to select the way of group work has the consistency, that is people prefer to "Self--managed work groups"; but different groups have the difference, the main group dimension is the difference between group members and group leaders. (5) Work groups which were composed accordingly to interpersonal attraction have higher levels of communication, coordination, group cohesion and job satisfaction than ability--based groups based. But the performance evaluation under these two conditions has no difference. The thesis analysis and discuss the research results, also point out several questions that needed to be explored further and the possible research directions in the future. This study has some reference value in group--level performance appraisal and reward design, the content and method of group--level job design, and personnel selection of group, etc.
Resumo:
The relationship between the alpha-N index and physical properties of neutral phosphorus extractants is studied. Using the general alpha-N index which could describe extractants with minute difference in structure, the good correlation between it and various physical properties of the neutral phosphorus extractants (e.g., densities, refractive index, shift ratio of paper chromatography and IR frequencies of bond P = O) is obtained. The result indicates that general alpha-N index is a good topological index of organic compounds.
Resumo:
This approach is undertaken to examine the correlation ability of the general a(N)-index (GAI) to predict chromatographic behavior. The test is performed on various types of organophosphorus compounds. The results demonstrate that the GAI possesses a good correlation with chromatographic properties.
Resumo:
The general a(N) index (GAI) was used to characterize the cis, trans isomers of hydrocarbons. The best one-variable equations were obtained with GAI for several physicochemical properties of seven pairs of olefin cis, trans isomers. The linear correlation coefficients are in the range of 0.975 to 0.997. GAI was also compared with the other five topological indices, Randic connectivity index chi, Wiener number W, Hosoya index Z, the average distance sum connectivity J proposed by Balaban and a(N) index introduced by Yang, in correlating with the octane number (MON) of heptanes and octanes.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.
Resumo:
The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolfic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and shred ceramic particles corresponds to a I-Vproperty with two critical voltages. The growth regularity of PEO cermet coatings was also studied.
Resumo:
In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs' parameter on the pull-off process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle (pi/2 is the maximum value), smaller a/R or larger nondimensional parameter value of Delta gamma/E*R. Relations among the contact half width, the external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the present paper as basic solutions are helpful and applicable for experimenters and engineers.
Resumo:
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress,intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.
Resumo:
A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
A method based on the computational fluid dynamics (CFD) is presented for a flexible waverider's design. The generating bodies of this method could be any cones. In addition, either the leading edge or the profile of the scramjet's inlet is used as the waverider's definition curve, parameterized by the quadric function, the sigmoid function or the B-spline function. Furthermore, several numerical examples are carried out to validate the method and the relevant codes. The CFD results of the configurations show that all the designs are successful. Moreover, primary suggestions are proposed for practical design by comparing the geometrical and aerodynamic performances of the cone-derived waveriders at Mach 6.