165 resultados para GAS-LIQUID INTERFACE

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrosol of SnO2 nanoparticles are prepared by the method of colloid chemistry. The free piling up process of nanosized SnO2 colloid particles are investigated at the gas-liquid interface by LB and Brewster Angle Microscopy techniques. The result indicates that solid state monolayer and multilayer of SnO2 nanoparticles can be formed at the gas-liquid interface only by aging the sol in air or compressing it without amphiphiles surfactant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ion transfer of 0hromazural S (CAS) across ~he in%erface of W/NB and W/l, 2- ])CE was sgadied by oyclie vol~amme~ry and ehronopoten~iome~ry wibh linear current scanning. The $ransfer mechanism of GAS was proposed in terms of lis eleo~roohemic~l behavior and equilibria of diasocia~ion. The experimental da~a obtained for half-wave po~eniial AoWT~/~ and pH in W phase are in agreemen~ wi~h ~he ~heoretieal equation based on ~he mechanism proposal. The siandard po~engial differences AoWT~ and standa...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies have been performed for horizontal two-phase air-water flows at normal and reduced gravity conditions in a square cross-section channel. The experiments at reduced gravity are conducted on board the Russian IL-76 reduced gravity airplane. Four flow patterns, namely bubble, slug, slug-annular transition and annular flows, are observed depending on the liquid and gas superficial velocities at both conditions. Semi-theoretical Weber number model is developed to include the shape influence on the slug-annular transition. It is shown that its prediction is in reasonable agreement with the experimental slug-annular transition under both conditions. For the case of two-phase gas-liquid flow with large value of the Froude number, the drift-flux model can predict well the observed boundary between bubble and slug flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

气液两相流体系是一个复杂的多变量随机过程体系,流型的定义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的重点内容。本文就与气液两相流流型及其判别有关的研究状况进行了回顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态和趋势。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the experimental and theoretical studies of gas-liquid bubbly flow in vertical upward pipeline carried out at Institute of Mechanics, Chinese Academy of Sciences. Bubbly flow in a vertical pipe with a 3 m long and 5 cm inner diameter plexiglass pipe was experimentally investigated, and studies carried out on the relationship between superficial velocities of the liquid and gas phases and pressure gradient is described. The developed drift-flux model applied to gas-liquid bubbly flow is presented, and the results are compared against the experimental data measured by ours in air/water vertical pipes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational simulation is conducted to investigate the influence of Rayleigh-Taylor instability on liquid propellant reorientation flow dynamics for the tank of CZ-3A launch vehicle series fuel tanks in a low-gravity environment. The volume-of-fluid (VOF) method is used to simulate the free surface flow of gas-liquid. The process of the liquid propellant reorientation started from initially flat and curved interfaces are numerically studied. These two different initial conditions of the gas-liquid interface result in two modes of liquid flow. It is found that the Rayleigh-Taylor instability can be reduced evidently at the initial gas-liquid interface with a high curve during the process of liquid reorientation in a low-gravity environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, but important three-atom model was proposed at the solid/liquid interface, leading to a new criterion number, lambda, governing the boundary conditions (BCs) in nanoscale. The solid wall is considered as the face-centered-cubic (fcc) structure. The fluid is the liquid argon with the well-known LJ potential. Based on the concept, the two micro-systems have the same BCs if they have The same criterion number. The degree of the locking BCs is enhanced when lambda equals to 0.757. Such critical criterion number results in the substantial epitaxial ordering and one, two, or even three liquid layers are locked by the solid wall, depending on the coupling energy scale ratio of the solid and liquid atoms. With deviation from the critical criterion number, the flow approaches the slip BCs and there are little ordering structures within the liquid. Always at the same criterion number, the degree of the slip is decreased or the locking is enhanced with increasing the coupling energy scale ratio of the solid and liquid atoms. The above analysis is well confirmed by the molecular dynamics (MD) simulation. The slip length is well correlated in terms of the new criterion number. The future work is suggested to extend the present theory for other microstructures of the solid wall atoms and quasi-LJ potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An on-line sample introduction technique in capillary gas chromatograph (CGC) for the analysis of high-pressure gas-liquid mixtures has been designed and evaluated. A sample loop of 0.05 muL and a washing solvent loop of 0.5 muL are mounted on a 10-port switching valve, which serves as the injection valve. A capillary resistor was connected to the vent of sample loop in order to maintain the pressure of the sample. Both the sample and the washing solvent are transferred into the split-injection port through a narrow bore fused silica capillary inserted into the injection liner through a septum. The volume of the liner is used both as the pressure-release damper and evaporation chamber of the sample. On-line analysis of both reactants and resultants in ethylene olimer reaction mixture at 5 MPa was carried out, which demonstrated the applicability of the technique. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation of a heterogeneous electron-transfer (ET) reaction at the water/1,2-dichloroethane interface employing a double-barrel micropipet technique is reported. The chosen system was the reaction between Fe(CN)(6)(3-) in the aqueous phase (W) and ferrocene in 1,2-dichloroethane (DCE). According to the generation and the collection currents as well as collection efficiency, the ET-ion-transfer (IT) coupling process at such an interface and competing reactions with the organic supporting electrolyte in the organic phase can be studied. In addition, this technique has been found to be an efficient method to distinguish and measure the charge-transfer coupling reaction between two ions (IT-IT) processes occurring simultaneously at a liquid/liquid interface. On this basis, the formal Gibbs energies of transfer of some ions across the W/DCE interface, such as NO3-, NO2-, Cl-, COO-, TBA(+), IPAs+, Cs+, Rb+, K+, Na+, and Li+, for which their direct transfers are usually difficult to obtain because of the IT-IT coupling processes, were quantitatively evaluated.