2 resultados para Fuel models
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this study, the Euler-Euler (E-E) and Euler-Lagrange (E-L) models designed for the same chemical mechanism of heterogeneous reactions were used to predict the performance of a typical sudden-expanding coal combustor. The results showed that the current E-E model underestimated the coal burnout rate because the particle temperature fluctuation on char combustion is not adequately considered. A comparison of the E-E and E-L simulations showed the underestimation of heterogeneous chemical reaction rates by the E-E model. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The surface properties, porosities, and adsorption capacities of activated carbons (AC) are modified by the oxidation treatment using concentrated H2SO4 at temperatures 150-270 degreesC. The modified AC was characterized by N-2 adsorption, base titration, FTIR, and the adsorption of iodine, chlorophenol, methylene blue, and dibenzothiophene. The treatment of AC with concentrated H2SO4 at 250 degreesC greatly increases the mesoporous volume from 0.243 mL/g to 0.452 mL/g, specific surface areas from 393 m(2)/g to 745 m(2)/g, and acidic surface oxygen complexes from 0.071 meq/g to 1.986 meq/g as compared with the unmodified AC. The base titration results indicate that the amount of acidic surface oxygen groups on the modified AC increases with increasing the treatment temperatures and carboxyls and phenols are the most abundant carbon-oxygen functional groups. The carboxyl groups, COO- species, and hydroxyl groups are detected mainly for the sample treated at 250 degreesC. The mesoporous properties of the AC modified by concentrated H2SO4 were further tested by the adsorption of methylene blue and dibenzothiophene. The AC modified by concentrated H2SO4 at 250 degreesC has much higher adsorption capacities for large molecules (e.g., methylene blue and dibenzothiophene) than the unmodified AC but less adsorption capacities for small molecules (e.g., iodine). The adsorption results from aqueous solutions have been interpreted using Freundlich adsorption models.