27 resultados para Frammentazione, Infrastrutture viarie, Corine Land Cover, Attraversamenti faunistici, GIS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.
Resumo:
Decision tree classification algorithms have significant potential for land cover mapping problems and have not been tested in detail by the remote sensing community relative to more conventional pattern recognition techniques such as maximum likelihood classification. In this paper, we present several types of decision tree classification algorithms arid evaluate them on three different remote sensing data sets. The decision tree classification algorithms tested include an univariate decision tree, a multivariate decision tree, and a hybrid decision tree capable of including several different types of classification algorithms within a single decision tree structure. Classification accuracies produced by each of these decision tree algorithms are compared with both maximum likelihood and linear discriminant function classifiers. Results from this analysis show that the decision tree algorithms consistently outperform the maximum likelihood and linear discriminant function classifiers in regard to classf — cation accuracy. In particular, the hybrid tree consistently produced the highest classification accuracies for the data sets tested. More generally, the results from this work show that decision trees have several advantages for remote sensing applications by virtue of their relatively simple, explicit, and intuitive classification structure. Further, decision tree algorithms are strictly nonparametric and, therefore, make no assumptions regarding the distribution of input data, and are flexible and robust with respect to nonlinear and noisy relations among input features and class labels.
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
We obtained four phases of land cover spatial data sets by interpreting MSS images of middle and late 1970s and three phases of TM images of late 1980s, 2004 and 2008 based on field investigation in Three Rivers' Source Region. We analyzed the temporal and spatial characteristics of land cover and macro ecological changes in Three Rivers' Source Region in Qinghai-Tibet plateau since middle and late 1970s. Indicated by land cover condition index change rate and land cover change index, land cover and macroscopical ecological condition degenerated (7090 period Zc -0.63, LCCI -0.58)-obviously degenerated (9004 period, Zc -0.94, LCCI -1.76)-slightly meliorated (0408 period, Zc 0.06, LCCI 0.33). This course was jointly driven by climate change, grassland stocking pressure and implement of ecological construction project.
Resumo:
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.
Resumo:
Land-cover changes in China are being powered by demand for food for its growing population and by the nation's transition from a largely rural society to one in which more than half of its people are expected to live in cities within two decades. Here we use an analysis of remotely sensed data gathered between 1990 and 2000, to map the magnitude and pattern of changes such as the conversion of grasslands and forests to croplands and the loss of croplands to urban expansion. With high-resolution ( 30 m) imagery from Landsat TM for the entire country, we show that between 1990 and 2000 the cropland area increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China, large areas of woodlands, grasslands and wetlands were converted to croplands, while in southern China large areas of croplands were converted to urban areas. The land-cover products presented here give the Chinese government and international community, for the first time, an unambiguous understanding of the degree to which the nation's landscape is being altered. Documentation of these changes in a reliable and spatially explicit way forms the foundation for management of China's environment over the coming decades.
Resumo:
Reducing uncertainties in the estimation of land surface evapotranspiration (ET) from remote-sensing data is essential to better understand earth-atmosphere interactions. This paper demonstrates the applicability of temperature-vegetation index triangle (T-s-VI) method in estimating regional ET and evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy) from MODIS/Terra and MODIS/Aqua products in a semiarid region. We have compared the satellite-based estimates of ET and EF with eddy covariance measurements made over 4 years at two semiarid grassland sites: Audubon Ranch (AR) and Kendall Grassland (KG). The lack of closure in the eddy covariance measured surface energy components is shown to be more serious at MODIS/Aqua overpass time than that at MODIS/Terra overpass time for both AR and KG sites. The T-s-VI-derived EF could reproduce in situ EF reasonably well with BIAS and root-mean-square difference (RMSD) of less than 0.07 and 0.13, respectively. Surface net radiation has been shown to be systematically overestimated by as large as about 60 W/m(2). Satisfactory validation results of the T-s-VI-derived sensible and latent heat fluxes have been obtained with RMSD within 54 W/m(2). The simplicity and yet easy use of the T-s-VI triangle method show a great potential in estimating regional ET with highly acceptable accuracy that is of critical significance in better understanding water and energy budgets on the Earth. Nevertheless, more validation work should be carried out over various climatic regions and under other different land use/land cover conditions in the future.
Resumo:
Rapid urbanization and industrialization in southern Jiangsu Province have consumed a huge amount of arable land. Through comparative analysis of land cover maps derived from TM images in 1990, 2000 and 2006, we identified the trend of arable land loss. It is found that most arable land is lost to urbanization and rural settlements development. Urban settlements, rural settlements, and industrial park-mine-transport land increased, respectively, by 87 997 ha (174.65%), 81 041 ha (104.52%), and 12 692 ha (397.99%) from 1990 to 2006. Most of the source (e.g., change from) land covers are rice paddy fields and dryland. These two covers contributed to newly urbanized areas by 37.12% and 73.52% during 1990-2000, and 46.39% and 38.86% during 2000-2006. However, the loss of arable land is weakly correlated with ecological service value, per capita net income of farmers, but positively with grain yield for some counties. Most areas in the study site have a low arable land depletion rate and a high potential for sustainable development. More attention should be directed at those counties that have a high depletion rate but a low potential for sustainable development. Rural settlements should be controlled and rationalized through legislative measures to achieve harmonious development between urban and rural areas, and sustainable development for rural areas with a minimal impact on the ecoenvironment. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
毛乌素沙地是我国十二大沙漠之一,地处北方干旱半干旱区向亚湿润区过渡地带,长期以来,不合理的人类土地利用,结合当地脆弱的环境生态特征,引起了严重的现代荒漠化过程,是我国北方荒漠化研究的重点地区。本文着重从自然和人文学科密切合作的角度,对毛乌素沙地土地利用/土地覆被变化的内在作用机制进行了研究,得到以下主要结论: 1. 利用多年实地观测数据资料,考察了毛乌素沙地四种主要草地类型代表性植物群落地上生物量响应气候因子波动的变化规律,建立了植物地上生物量对气候因子的逐月回归模型,揭示出如下规律:①各种气候因子对不同类型草地以及同一类型不同生长阶段草地都产生不同的影响作用;②同一气候因子在植物不同生长阶段上,对生物量形成的重要性程度存在差异:③在植物生长期内,每个生长阶段的生物量都对后一时期的生物量产生显著影响,说明植物生长的连续性对于生物量的形成和积累是重要的;④在植物的凋枯期,各种气候因子基本上都不对生物量产生显著影响;⑤水分因子对毛乌素沙地几乎各种类型草地的生物量,都是重要的影响因子,毛乌素沙地降水状况在不同年份的显著波动对草地植物地上生物量的影响,不仅直接构成了土地覆被变化的重要组成部分,而且还影响到土地利用的方式、方法和后果。 2. 在考察毛乌素沙地草地地上生物量对气候因子变化的响应规律中,利用逐月动态回归建模方法改进了传统的累积气候因子回归建模方法。逐月回归模型与累积回归模型的比较显示,逐月动态回归模型的优势表现在三个方面:①可以提供累积回归模型无法揭示的作用规律;②模拟更加精确;③可以预测不同气候条件下群落地上生物量的变化范围。 3. 利用风速、降水和潜在蒸发等气象记录资料,建立了毛乌素沙地气候因子影响沙尘暴频率的作用模型,定量地考察了沙地各处气候因子对沙尘暴频率的影响作用。研究表明,气候因素是导致毛乌素沙地沙尘暴发生的主导原因,在沙地各处,气候因子可以解释沙尘暴频率分布格局总信息的比率分别为:乌审召83.6%,乌审旗77.5%,河南82.4%,鄂托克旗79.8%,新街73.1%,伊金霍洛旗82%。 4. 在定量考察气候因素对沙尘暴频率影响作用的基础上,对影响沙尘暴频率格局的自然和人为因素进行了定量分离,研究表明:人为影响因素对对沙尘暴发生起次要作用,解释沙尘暴频率分布格局信息的比率分别为:乌审召16.4%,乌审旗22.5%,河南17.6%,鄂托克旗20.2%,新街26.9%,伊金霍洛旗18%。 自然和人为因素影响作用的定量分离研究表明,毛乌素沙地人为因素的影响作用表现出空间上的差异性:①从方位上说,呈现自东向中、西部递减的梯度:②从地点上说,城镇附近人为影响作用远高于农村地区;③从土地利用方式上说,农垦种植业区域高于畜牧业区域。 5. 在实地观测基础上,建立了裸露沙面和植被覆盖沙面风蚀输沙率模型,定量考察了植被覆盖率与风蚀输沙率之间的关系。研究表明:当植被覆盖率达到60%以上,可以保护地表土壤使风蚀在大多数条件下不致发生;当覆盖率达到40%,可以使风蚀输沙大为减少;而当植被覆盖率低于10%,植被覆盖基本不能对地表土壤起到有效的防护作用。 6. 应用植被覆盖地表风蚀输沙率模型,考察了沙地不同风速条件下植被有效覆盖率。根据当地气象台站的多年气象记录,沙地最大风速在20m/s左右,这样的风速条件下,保证风蚀不致发生的植被有效覆盖率为65%左右;在沙地常见的大风风速14-16m/s下,植被有效覆盖率大致为50-55%;对于沙地一般的中等风速l0-12m/s.植被有效覆盖率为40%。植被覆盖对风蚀的影响作用也可以理解为,植被覆盖使沙粒起动风速发生了增大效应,研究表明:与裸露沙面沙粒起动风速4.5m/s对照,70%植被覆盖率使起动风速改变为15.4m/s;60%植被覆盖率使起动风速改变为12.1m/s;40%植被覆盖率使起动风速改变为8.Om/s;而在10%植被覆盖条件下,起动风速为5.Om/s,改变量很小,说明植被覆盖的保护作用极其有限。 7. 基于野外实地观测,比较了沙地五种常见植物种和二种人工防护材料防风效应上的差异。研究表明,防风效应由高到低的次序是,沙蒿>芨芨草>杨柴和牛心朴子>沙障>栅栏>旱柳;就乔、灌、草和人工材料而言,防风效应的次序是,灌木植被>草本植被>人工材料>乔木植被。植物和人工防护材料降低风速的比率与风速呈现二次函数关系,不同植物种或人工材料,降低风速比率都表现出不同的规律,在一般情况下,降低风速效应随着风速的增大而降低。 8. 通过不同植物种防风效应的比较研究,对毛乌素沙地植被生态建设的实践有一定的指导意义。毛乌素沙地的植被建设中对植被类型和植物种类的选择,应该遵循如下原则:①选取防风固沙效应好的植物种类;②应该考虑植物水分供给与需求的平衡状况,实行适地适树;③植物防护效应应该与当地风蚀气候在时间上较好地匹配,在春季等风蚀严重季节,植被覆盖应该具有较好的防风效应。 9. 在现实中,各种影响风蚀的因素是同时发挥作用的。将风蚀影响因素分解为风速、湿润度和植被覆盖率(以及植被类型)三个方面,在此基础上,建立了风蚀影响因素的综合作用的概念模型和沙丘活动性指数定量模型。湿润程度低、风速高、植被覆盖率低的地区,是风蚀最为严重的地区;在湿润程度高、风速低、植被覆盖率高的地区,是风蚀最弱的地区;在其他地区,风蚀状况根据三个方面因素的综合状况来决定。 10. 利用风蚀影响因子综合作用的沙丘活动性指数模型,从空间、时间、植被类型变化角度,考察了毛乌素沙地的风蚀变化状况。得到如下结论:①随着空间变化,风速、降水等气候因素也随之存在差异,导致沙丘活动性指数的变化规律是,西北部鄂托克旗沙丘活动性最高,乌审旗次之,其他几个站差别不太显著,这是由各地降水、气温、沙粒粒径等因素共同决定;②随着时间的变化,气候、植被生长等方面的状况随之发生改变,导致沙丘活动性发生变化,春季最高,冬季次之,夏秋季最低:③随着沙丘植被覆盖类型的变化,沙丘活动性也发生显著变化,在一般情况下,乔木覆盖沙丘活动性>草本植物覆盖沙丘>灌木覆盖沙丘。 11. 在实地调查土地利用现实状况及其社会、经济和政策影响因素的基础上,建立了我国北方干旱半干旱区土地利用决策机制的概念模型,分析了与土地利用密切相关的农牧民一政府一环境科学家这三个社会群体对土地利用的立场和影响作用力上的差异,分析了毛乌素沙地土地利用的现状及其影响因素,探讨了现实中不可持续土地利用行为发生的社会、经济和政策原因。 12. 在实地调查基础上,分别利用产出一费用分析法和过程影响因素分析法,建立了毛乌素沙地土地利用经济收益的定量模型。产出一分析研究表明,无论是农垦种植业,还是草地畜牧业,农牧民从这两种土地利用方式都只能获得较低下的经济收益。造成这种状况的原因,主要在于两个方面:一是低下且不断处于波动之中的农牧业产品物价,二是沉重的农牧业税收。 13. 将影响农牧业产出的因素,划分为四个方面:土地面积(牲畜头数)、环境状况、管理水平和利用强度,在此基础上建立了定量的影响作用模型。研究表明:环境状况指数每增加0.1,农牧业经济收益增加26%;管理水平因子每提高0.1,农牧业经济收益增加12.7%;农牧业经济收益最优的土地利用强度在0.4左右,在此之前,随着利用强度的增加,经济收益随之增大,而在此之后,随着利用强度的增大,经济收益逐渐降低,当土地利用强度达到0.9左右时,呈现负的经济收益。 14. 毛乌素沙地实施土地资源可持续利用,必须从技术的革新和社会经济政策等因素的调整两条途径同时入手,二者缺一不可。通过改进和应用节水灌溉、风能光能利用、生物增产技术,尽可能地提高各种资源的利用效率;通过应用免耕或浅耕技术,尽量减轻土地利用对资源和环境的破坏;通过栽培、速生技术,提高植被建设的成效和速度。而通过税收、物价政策的调整,尽可能地提高农牧民经济收益增长的速度,减轻土地利用压力;通过政府与人民之间对话和合作机制的建立,让广大农牧民参与到土地利用的决策和管理的过程中去;通过土地利用管理政策、措施的调整和完善,调动农牧民保护资源的积极性和自觉性;通过激励机制的建立,引导农牧民土地利用向着可持续的方向发展。 15. 实现毛乌素沙地土地资源可持续利用的有效途径,在于这样几个方面:①建立和完善政府及其管理部门与人民之间有效的对话和合作机制,让广大农牧民参与到土地利用决策和管理的过程中去:②实行产业结构调整,转变片面追求经济增长的做法,制订适应当地自然条件和生态特征的发展模式;③降低农牧业税收、稳定并提高农牧业产品的物价,增加农牧民经济收入,减轻土地利用压力;④进一步改进和完善土地利用管理政策和法规;⑤建立有效激励机制,引导农牧民土地利用向着可持续的方向发展:⑥努力改进节水灌溉技术、生物增产技术,提高土地利用的科技水平:⑦改进环境保护和植被建设决策的科学性,提高植被建设的成效。
Resumo:
The Central Yangtze ecoregion in China includes a number of lakes, but these have been greatly affected by human activities over the past several decades, resulting in severe loss of biodiversity. In this paper, we document the present distribution of the major lakes and the changes in size that have taken place over the past 50 years, using remote sensing data and historical observations of land cover in the region. We also provide an overview of the changes in species richness, community composition, population size and age structure, and individual body size of aquatic plants, fishes, and waterfowl in these lakes. The overall species richness of aquatic plants found in eight major lakes has decreased substantially during the study period. Community composition has also been greatly altered, as have population size and age and individual body size in some species. These changes are largely attributed to the integrated effects of lake degradation, the construction of large hydroelectric dams, the establishment of nature reserves, and lake restoration practices.
Resumo:
分布式水文模型以其具有明确物理意义的参数结构和对空间分异性的全面反映,能够准确详尽地描述和模拟流域内真实的降水径流过程而被广泛需求和关注。在模拟土地利用、土地覆盖、水土流失等各种变化过程的水文响应,面源污染、陆面过程、气候变化影响评价等诸多领域都有广泛的应用。模型的预报精度和误差至关重要,决定了模型的应用和推广。在分析分布式水文模型建立和验证过程的基础上,提出了模型的4类误差来源:被排除在外的因素引起的误差,实测历史记录资料的随机或系统误差,参数误差和模型结构误差,讨论了各类误差的分析与计算方法,为模型的发展和成长提供了依据。
Resumo:
LUCC是全球变化研究的核心主题之一,也是社会经济可持续发展的关键问题。改革开放后四川的社会经济发展非常快,在各种因素的驱动下,土地利用/覆盖发生了深刻变化。目前四川省缺乏基于实际调查数据的、全域性的、具有连续时间序列的LUCC和驱动力分析及土地可持续利用研究成果,这对我们从全局上把握全省土地利用现状、发展变化趋势,利用土地政策参与宏观调控,实现长期可持续发展目标,建设资源节约型、环境友好型社会极为不利。本研究针对这一问题,选取全川八大土地利用类型作为研究对象,研究了全省1996年到2006年的土地利用/覆盖格局和变化情况,分析了不同尺度的驱动因素,对全省农用地和建设用地的集约利用状况、潜力进行了分析评价,并提出相应的对策措施。 1.1996年-2006年10年来整个省域的土地利用/覆盖格局变化。 (1)1996年-2006年全省的土地利用/覆盖格局 1996年,全省是一个以农用地为主的土地利用/覆盖格局,林地和牧草地属于优势覆盖类型(合占69.17%),居民点及工矿用地和交通用地合占只有3%左右。 2000年的LUCC格局较为明显的特点是耕地所占比重下降0.4个百分点,水域和未利用土地所占比重有所下降,牧草地保持不变,其余地类所占比重有所上升。 与2000年相比,2004年林草地的优势格局进一步得到强化(合占比重达到70.23%)。耕地面积占幅员面积的比重下降0.83个百分点,略有下降的有未利用土地、水域和牧草地。值得关注的是在“退耕还林还草”的大背景下,牧草地占幅员面积的比重下降0.04个百分点。 到2006年,仍为林草地为主导优势的格局,二者合占上升0.15%。在城市化快速推进的背景下,居民点及工矿用地中的城市用地和建制镇用地占比重超过15%,农村居民点占比重降至76%。交通用地中农村道路占比重降至57.8%,公路用地占比重升至37.5%。五个地貌区的土地利用/覆盖格局与全省的变化基本一致。值得关注的是盆西平原区的交通用地上升幅度和盆地丘陵区的未利用土地的开发利用力度明显大于其它地貌区。 (2)1996-2006年10年间土地利用/覆盖格局的变化 1996-2000年4年间,耕地、水域和未利用地三个地类下降,年均减少0.75、0.19和0.32个百分点。其中耕地年均减少49229.0公顷,约一半流向林地,13.77%流向园地,约20%流向建设用地。另外5个地类面积增长,增长绝对量最大的是林地,年均增长40063.7公顷,交通用地增幅最大,4年年均增长达1.95%。 2001-2004年是西部大开发逐步推进、“退耕还林还草”项目全面展开和土地整理深入实施的关键期,LUCC更为深刻。耕地、未利用地、水域和牧草地四个地类面积下降,其余地类按增长幅度依次是园地、交通用地、居民点及工矿用地和林地。耕地加速下降,年均降幅达到1.59%,其减少去向主要是林地(占66.75%)和园地(占19.84%),其增加来源主要是未利用地、园地和水域。交通用地的增幅最大,为3.96%,其增加主要来源于耕地、未利用土地和林地,分别占49.96%、16.63%和13.09%。居民点及工矿用地增长幅度为3.12%。 从1996年到2006年的10年间,耕地、未利用地、水域和牧草地下降幅度分别为10.36%、3.61%、1.34%和0.26%。园地增幅达23.61%。绝对面积增长最大的则是林地,达630733.3公顷。交通用地和居民点及工矿用地增幅也较大,分别为15.00%和9.31%。 10年间年均总变化量为310326.6公顷,2000年-2004年之间变化最大(为356865.8公顷),高于平均变化量,而1996-2000年间和2004-2006年间都小于平均变化量。 (3)10年间不同地貌区的LUCC变化 盆西平原区的特点是园地大幅上升达77%,居民点及工矿用地和交通用地也大幅上升,耕地、未利用地下降幅度大,该区耕地、水域、未利用地的减少强度和园地、居民点及工矿用地、交通用地的上升强度均居五区第一;盆地丘陵区的特点是牧草地下降幅度大,为-36.89%,交通用地、园地和林地上升幅度较大,该区耕地减少、未利用地减少、林地增加、居民点及工矿用地和交通用地增加的变化强度均居五区相应地类增减的第二位;盆周山地区的特点是耕地减少较多,交通用地和园地增长较大,该区林地变化强度居各区第一位,牧草地和水域变化强度居各区第二位,耕地、居民点及工矿用地和未利用地居各区第三位;川西南山地区的特点是园地、耕地、交通用地和居民点及工矿用地变化幅度大,另外四个地类变化较小。该区减少的牧草地占全省牧草地减少的97.91%,变化强度居各个地貌区的第一位,园地相对变化强度居五区的第二位;川西北高山高原区的特点是耕地大幅下降、园地大幅上升,交通用地升幅也较大,其余地类变化不大。值得注意的是,该区牧草地和水域面积增加,与全省该地类的变化相反。其余地类的相对变化强度均是五个地貌区中最小的。 用变化强度分值考量变化强度,盆西平原区的变化强度最大,盆地丘陵区和盆周山地区的变化强度相当,川西北高山高原区的变化强度则要小得多。 (4)1996年及2006年全省土地利用/覆盖格局的景观生态学分析 全省是以自然景观占优势(占约70%)、农业景观为补充、建设用地景观居于从属地位的土地利用景观格局。景观多样性和均匀度不高。到2006年,全省总的景观格局并无大的改变。总体情况是随着时间的推移和人类活动的加强,区内景观优势度上升、多样性和均匀度变小。但斑块数减少,斑块面积和斑块孔隙度有所增大。斑块的形状指数和分维数均有所下降,表明受人为干扰有加剧的趋势。反映景观格局结构的破碎度指数有轻微下降。景观指数的变化表明全省土地利用有缓慢集中、规模聚集的趋势。 (5)三大生态建设工程对土地利用/覆盖变化的影响 1996-2006年间LUCC与三大生态建设工程实施的耦合分析,发现退耕工程对耕地、林地、牧草地等地类覆盖变化的影响最大,天保工程次之,长防工程最小。 2.四川省LUCC驱动力分析 (1)总体分析: 从整体上分析,人为因素对区域整体LUCC的影响从1996年的63.32%增加到2006年的66.99%,变得日益强烈。同时人为因素影响强度表现出明显的区域差异,地势平缓、经济区位条件好的区域其人为影响强度明显较高。 政策体制转变下的经济高速增长、快速的城市化、工业化过程和生态建设是四川省LUCC宏观尺度的驱动因素。区域的LUCC主要受到了由内向外(从城市到乡村)和由外向内(从山顶向平地)两种作用力的共同推动。局部尺度上,如距离交通线、水利线、中心城市的远近,地形凸起、大型独立项目落址、重污染项目的阻隔等,甚至一些乡规民俗等因素也会成为LUCC的驱动影响因素。在较小的尺度上,人类个体行为选择对LUCC的影响也是存在的。 根据驱动因子的特性作者将其划分为驱变、阻变、良性、惰性因子等类型。 (2)分地貌区的驱动因子分析 各地貌区都存在城市化、工业化、生态工程实施、自然灾害等驱动因子,但主次不一。对于盆西平原和盆地丘陵区,城市化、工业化是前两位的因子,而对另外三个地貌区,生态工程实施和产业结构调整则成为第第一、二位的驱动因子。 (3)分地类的驱动因子分析(以坡耕地为例) 分坡度的耕地变化分析发现,耕地减少主要集中在2°以下的平地、15°-25°和25°以上三个坡度级,是其它坡度级耕地减幅的三倍左右。这表明耕地减少受城市化进程和“退耕还林还草”工程驱动影响尤为巨大。 3.土地利用格局优化、集约利用评价和可持续利用及对策研究 (1)土地利用格局优化的战略选择及调整预测 土地利用格局调整的战略是农业生产用地、建设用地和生态及其他用地占幅员的比重分别稳定在13%、7%和80%左右,重点是三大类别内部二级和三级地类的合理调整。 (2)全省土地集约利用评价 全省农用地利用集约度为0.46,总体上集约度不高,处于较适度利用阶段。建设用地利用集约度为0.38,处于较适度利用阶段。集约利用提升空间较大。 农用地的潜力主要在于加强土地保育、完善利用制度、提高单产。城市建设用地的包括存量潜力、强度潜力、结构潜力,空间很大。农村居民点整理潜力可以逐步挖掘。 (3)新增建设用地集约利用的统筹安排 据测算,到2020年,四川省城市建设用地需求量在463850-492360hm2之间,城镇各业新增建设用地规模为361276.79hm2,占用耕地200565.94 hm2。2004-2020年间四川省农村居民点整理潜力33.86万hm2。农村居民点建设用地需求量为70.57万公顷。 (4)土地集约利用措施与坡耕地可持续利用战略 提出了土地集约利用的措施。在对坡耕地生态系统结构与功能分析的基础上,提出坡耕地可持续利用战略与生态恢复战略,并从技术和政策层面提出了坡耕地合理利用和生态退耕的措施和建议。 LUCC is one of the key questions of global change and sustainable development of society. After the opening and reform of China, the society and economy of Sichuan Province developed very fast ,the land-use/cover changed very strong droved by many factors .But nowadays we have no constant spatial-temporal study and driving force analysis about the whole province based on investigation. And it is lack of land sustainable utilization study based on correlative study. So we choose all the land resource in Sichuan, combine RS and GIS and field investigation, and take statistic-mathematic means and system analysis, to study the LUCC patterns and different scale driving force of different physiognomy regions, land cover types and periods; to analyze the current situation and potential of land resource intensive utilization, and gave out corresponding measurements. We found that forest and grassland are the dominant cover types of Sichuan provincial land –use/cover pattern, and becoming more and more stronger from 1996 to 2006,the natural landscape is the metric and occupy 70%,the diversity and evenness index are not high; the totally change quantity from 2000 to 2004 is the biggest; cultivated land especially steep cultivated land ,garden plot, forestry land ,settlement and industry land and traffic land changed relative stronger; among five physiognomy regions ,the changing intensity of PEN XI PING YUAN QU is the biggest, CHUAN XI BEI GAO SHAN GAO QU is smallest; under the background of policy system changing, the fast developing of economy, fast urbanization and industrialization and ecology construction are the macro-scale driving force of Sichuan provincial LUCC; to compare the impacts of “TUI GENG GONG CHENG” on LUCC especially to cultivated land ,forestry land and grassland is strongest, “TIAN BAO GONG CHENG ” is stronger,“ HANG FANG GONG CHENG” is smallest; the intensive utilization level of farmland and construction land of whole province is relative moderation, there is huge potential to excavate and fulfill the increasing demand of construction land;we must take synthetic measurements to accelerate the sustainable utilization of land resource, including administrative, economical ,technological and ecological policies.
Resumo:
The aim of this paper is to show that Dempster-Shafer evidence theory may be successfully applied to unsupervised classification in multisource remote sensing. Dempster-Shafer formulation allows for consideration of unions of classes, and to represent both imprecision and uncertainty, through the definition of belief and plausibility functions. These two functions, derived from mass function, are generally chosen in a supervised way. In this paper, the authors describe an unsupervised method, based on the comparison of monosource classification results, to select the classes necessary for Dempster-Shafer evidence combination and to define their mass functions. Data fusion is then performed, discarding invalid clusters (e.g. corresponding to conflicting information) thank to an iterative process. Unsupervised multisource classification algorithm is applied to MAC-Europe'91 multisensor airborne campaign data collected over the Orgeval French site. Classification results using different combinations of sensors (TMS and AirSAR) or wavelengths (L- and C-bands) are compared. Performance of data fusion is evaluated in terms of identification of land cover types. The best results are obtained when all three data sets are used. Furthermore, some other combinations of data are tried, and their ability to discriminate between the different land cover types is quantified