46 resultados para Fort Monroe (Va.)--Aerial views.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrogallol is a potent allelochemical on Microcystis aeruginosa, but its allelopathic mechanism is not fully known. In order to explore this mechanism, gene expressions for prx, mcyB, psbA, recA, grpE, fabZ under pyrogallol stress were studied, and activities of the main antioxidant enzymes were also measured. The results showed that expression of grpE and recA showed no significant change under pyrogallol stress, while psbA and mcyB were up-regulated at 4 mg L-1. Both prx and fabZ were up-regulated even under exposure to 1 mg L-1 pyrogallol concentration. The activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced under pyrogallol stress. Levels of malodialdehyde (MDA) at 2 and 4 mg L-1 pyrogallol were significantly higher than those of the controls. It was concluded that oxidant damage is an important mechanism for the allelopathic effect of pyrogallol on M. aeruginosa. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intertidal macroalgae experience continual alternation of photosynthesis between aquatic state at high tide and aerial state at low tide. The comparative photosynthetic responses to inorganic carbon were investigated in the common intertidal macroalga Ulva lactuca L. along the coast of Shantou between aquatic and aerial state. The inorganic carbon dissolved in seawater at present could fully (at 10 degreesC or 20 degreesC) or nearly (at 30 degreesC) saturate the aquatic photosynthesis of U. lactuca. However, the aerial photosynthesis was limited by current ambient atmospheric CO2 level, and such a limitation was more severe at higher temperature (20degrees - 30degrees T) than at lower temperature (10 T). The carbon-saturated maximal photosynthesis of U. lactuca under aerial state was much greater than that under aquatic state at 10 degreesC and 20 degreesC, while the maximal photosynthesis under both states was similar at 30 degreesC. The aerial values of K-m (CO2) for photosynthesis were higher than the aquatic values. On the contrary, the values of apparent photosynthetic CO2 conductance under aerial state were considerably lower than that under aquatic state. It was concluded that the increase of atmospheric CO2 would enhance the primary productivity of U. lactuca through stimulating the photosynthesis under aerial state during low tide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

大气CO_2浓度升高对整个陆地生态系统产生巨大影响。微生物是土壤中重要而又活跃的组成部分,是自然界物质循环不可缺少的成员,行使着许多对陆地生命至关重要的功能。因此,了解土壤中微生物的变化,是了解整个陆地生态系统对大气CO_2浓度升高响应的关键。木文利用在江苏省无锡市建立的稻一麦轮作FACE系统研究平台,研究了CO_2浓度升高对农田土壤微生物及VA菌根的影响。结果发现在FACE条件下,土壤细菌、真菌和放线菌的数量都随着小麦和水稻的生长而发生变化,分别在小麦返青期和水稻拔节期偏大,随后均有所下降,与对照相比,CO_2浓度升高增加土壤细菌、真菌和放线菌的数量;小麦根区土壤中议菌根真菌的抱子以球囊霉属(Glomus)为优势属,以摩西球囊霉(Glomus mosseae)为优势种;在小麦拔节期和孕穗期观察到VA菌根真菌侵染,侵染率在拔节期偏高,后逐渐降低,CO_2浓度升高使小麦VA菌根侵染率增加,而在水稻根系没有观察到VA菌根真菌侵染;根系活力分别在小麦拔节期和水稻抽穗期偏高,到成熟期均降低,CO_2浓度升高使根系活力增强;小麦VA菌根侵染率与根系活力存在正相关关系。总之,大气CO_2浓度升高对农田土壤细菌、真菌和放线菌的数量、VA菌根侵染率及根系活力都表现出一定的促进作用。

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: