108 resultados para Focal Adhesions
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.
Resumo:
Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
<正>Focal adhesions(FAs)are large,multiprotein complexs that provides linkers between cytoskeleton to the extracellular matrix(ECM).Cells sense and respond to forces through
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
A new set of continuous superresolution filters is proposed which exhibits a radial superresolution performance with an extended depth of focus in an optical system by properly choosing the design parameters. Numerical simulation results of the performance parameters of the superresolution gain, the radial central core size, the Strehl ratio, the side-lobe factor and the depth of focus with different design parameters for the optimized patterns are displayed. We also give a design example for this kind of filter characterized by a birefringent element inserted between two parallel polarizers. This kind of filter would be useful in fields such as optical data storage systems.
Resumo:
A novel method for measuring the imaging quality of a projection system with mirror-symmetric FOCAL marks is proposed, and the principle of the method is described. Through experiments, it is demonstrated that not only the axial aberrations but also the lateral aberrations can be measured with high accuracy by the method. The advantages of the method include obtaining more aberrations than the FOCAL technique and making it much simpler to perform a full-scale measurement of the imaging quality of a lithographic projection system. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel method for measuring the imaging quality of a projection system with mirror-symmetric FOCAL marks is proposed, and the principle of the method is described. Through experiments, it is demonstrated that not only the axial aberrations but also the lateral aberrations can be measured with high accuracy by the method. The advantages of the method include obtaining more aberrations than the FOCAL technique and making it much simpler to perform a full-scale measurement of the imaging quality of a lithographic projection system. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper an electrically controllable radial birefringent pupil filter is proposed. It consists of two polarizers and an improved electrically controllable optical azimuth rotator which has two lambda/4 retarders, one electro-optical crystal and one radial birefringent crystal. The evolution and distribution of polarization states of this pupil filter are discussed. The most interesting and useful advantage of such a structure is that the characteristic of transverse superresolution and axial extended focal depth or focal shift can be obtained merely by controlling the applied voltage on the electro-optical crystal. The radial birefringent crystal azimuth angle cooperating with different electrical inductive phase differences will determine the transverse and axial intensity distribution. It is shown that for particular ranges of electrical inductive phase difference it is possible to obtain transverse superresolution along with extended focal depth or with a focal shift.
Resumo:
In this paper, the feed-forward back-propagation artificial neural network (BP-ANN) algorithm is introduced in the traditional Focus Calibration using Alignment procedure (FOCAL) technique, and a novel FOCAL technique based on BP-ANN is proposed. The effects of the parameters, such as the number of neurons on the hidden-layer and the number of training epochs, on the measurement accuracy are analyzed in detail. It is proved that the novel FOCAL technique based on BP-ANN is more reliable and it is a better choice for measurement of the image quality parameters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Determination of the energy range is an important precondition of focus calibration using alignment procedure (FOCAL) test. A new method to determine the energy range of FOCAL off-lined is presented in this paper. Independent of the lithographic tool, the method is time-saving and effective. The influences of some process factors, e.g. resist thickness, post exposure bake (PEB) temperature, PEB time and development time, on the energy range of FOCAL are analyzed.
Resumo:
A set of recursive formulas for diffractive optical plates design is described. The pure-phase plates simulated by this method homogeneously concentrate more than 96% of the incident laser energy in the desired focal-plane region. The intensity focal-plane profile fits a lath-order super-Gaussian function and has a nearly perfect flat top. Its fit to the required profile measured in the mean square error is 3.576 x 10(-3). (C) 1996 Optical Society of America
Resumo:
Based on the Huygens-Fresnel diffraction integral, analytical representation of unapertured converging Hermite-cosh-Gaussian beams is derived. Focal switch of Hermite-cosh-Gaussian beams is studied detailedly with numerical calculation examples and a physical interpretation of focal switch is presented. It is found that decentered parameter is the dominant factor for the emergence of focal switch, and Fresnel number affects the amplitude of focal switch and the value of critical decentered parameter to determine emergence of focal switch. Physically, the emergence of focal switch of Hermite-cosh-Gaussian beams is resulted from competition between two major maximum intensities and switch of the absolute maximum intensity from a point to another when decentered parameter increases. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A closed-form propagation equation of Hermite-cosh-Gaussian beams passing through an unapertured thin lens is derived. Focal shifts are analyzed by means of two different methods according to the facts that the axial intensity of some focused Hermite-cosh-Gaussian beams are null and that of some others are not null but the principal maximum intensity may be located on the axis or off the axis. Optimal focusing for the beams is studied, and the condition of optimal focusing ensuring the smallest beam width is also given. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
High-density optical data storage requires high-numerical-aperture (NA) lenses and short wavelengths, But, with increasing NA and decreasing wavelength, the depth of focus (DOF) decreases rapidly. We propose to use pure-phase superresolution apodizers to optimize the axial intensity distribution and extend the DOF of an optical pickup. With this kind of apodizer, the expected DOF can be 2-4.88 times greater than that of the original system, and the spot size will be smaller than that of the original system. (C) 2001 Optical Society of America.
Resumo:
We propose the use of a phase-shifting apodizers to increase focal depth, and we study the axial and radial behavior of this kind of apodizer under the condition that the axial intensity distribution is optimized for high focal depth. (C) 2002 Optical Society of America.