62 resultados para Flux économiques
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems.
Resumo:
The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper extends two-dimensional model of symmetric magnetostatic flux arches confined in stratified atmospheres (Zhang and Hu, 1992, 1993) to asymmetric models. Numerical results show that the flux structure is influenced greatly by the boundary condition of magnetic field, the force-free factor, the atmospheric pressure distribution and the position of footpoints (especially the width ratio of outlet to entrance, which differs from symmetric case).
Resumo:
Two-dimensional magnetostatic models of flux structure confined in stratified atmosphere are discussed in the present paper. The magnetic field in the flux structure is assumed to be force-free at the first step. Numerical solutions for this nonlinear free boundary problem are obtained by finite element method. Results show clearly the relation between the inside fields and outside pressure, especially the influence of atmospheric pressure distribution on the flux structure.
Resumo:
In this paper an isolated magnetic flux tube confined in stratified atmosphere is studied for slender and axisymmetric model. The functions of the pressure, density, and temperature are expanded as a Taylor series of magnetic surface function psi. Several models of an isolated magnetic flux tube confined in a stratified atmosphere are constructed, and the external pressure of the stratified atmosphere decreases reasonably with increasing height. The distribution of thermal dynamic quantities and the magnetic pressure in the flux tube are also obtained.
Resumo:
In the present paper, an isolated axisymmetric flux tube is discussed for slender magnetic configuration. The magnetostatic model and the stratified atmospheric model are applied, respectively, to the regions inside and outside the flux tube. The problem is described mathematically by the nonlinear partial differential equations under the nonlinear boundary condition at the free boundary of flux tube. According to the approximation of a small expansive angle, the solutions of series expressions are obtained formally. The model of polytropic plasma is discussed in detail especially. The results show the distributions of thermodynamic quantities and magnetic field extending from the high β region to the low β region, and the flux tube may be either divergent or convergent according to the pressure difference outside and inside the flux tube.
Resumo:
A two-dimensional model of a magnetic flux tube confined in a gravitational stratified atmosphere is discussed. The magnetic field in the flux tube is assumed to be force-free. By using the approximation of large scale height, the problem of a free boundary with nonlinear conditions may be reduced to one involving a fixed boundary. The two-dimensional features are obtained by applying the perturbation method and adopting the Luest-Schlueter model as the basic state. The results show that the configuration of a flux tube confined in a gravitational stratified atmosphere is divergent, and the more twisted the magnetic field, the more divergent is the flux tube.
Resumo:
A new type of sensor with the flexible substrate is introduced. It is applicable in measuring instantaneous heat flux on the model surface in a hypersonic shock tunnel. The working principle, structure and manufacture process of the sensor are presented. The substrate thickness and the dynamic response parameter of the sensor are calculated. Because this sensor was successfully used in measuring the instantaneous heat flux on the surface of a flat plate in a detonation-driven shock tunnel, it may be effective in measuring instantaneous heat flux on the model surface.
Resumo:
The furnace temperature and heat flux distributions of 1 MW tangentially fired furnace were studied during coal-over-coal reburn, and the influences of the position of reburn nozzle and reburn fuel fraction on furnace temperature and heat flux distributions were investigated. Compared with the baseline, the flue gas temperature is 70–90 C lower in primary combustion and 130–150 C higher at furnace exit, and the variations of the flue gas temperature distributions along furnace height are slower. The temperature distribution along the width of furnace wall decreases with the increase of the relative furnace height. In the primary combustion zone and the reburn zone, the temperature and heat flux distributions of furnace wall are much non-uniform and asymmetric along the width of furnace wall, those of furnace wall in the burnout zone are relatively uniform, and the temperature non-uniformity coefficients of the primary combustion zone, the reburn zone and the burnout zone are 0.290, 0.100 and 0.031, respectively.
CO2 flux evaluation over the evergreen coniferous and broad-leaved mixed forest in Dinghushan, China