93 resultados para Fixation biological

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcoleus vaginatus Gom., the dominant species in biological soil crusts (BSCs) in desert regions, plays a significant role in maintaining the BSC structure and function. The BSC quality is commonly assessed by the chlorophyll a content, thickness, and compressive strength. Here, we have studied the effect of different proportions of M. vaginatus, collected from the Gurbantunggut Desert in northwestern China, on the BSC structure and function under laboratory conditions. We found that when M. vaginatus was absent in the BSC, the BSC coverage, quantified by the percentage of BSC area to total land surface area, was low with a chlorophyll a content of 4.77 x 10(-2) mg g(-1) dry soil, a thickness of 0.86 mm, and a compressive strength of 12.21 Pa. By increasing the percentage of M. vaginatus in the BSC, the BSC coverage, chlorophyll a content, crust thickness, and compressive strength all significantly increased (P < 0.01). The maximum chlorophyll a content (13.12 mg g(-1)dry soil), the highest crust thickness, and the compressive strength (1.48 mm and 36.60 Pa, respectively) occurred when the percentage of inoculated M. vaginatus reached 80% with a complex network of filaments under scanning electron microscope. The BSC quality indicated by the above variables, however, declined when the BSC was composed of pure M. vaginatus (monoculture). In addition, we found that secretion of filaments and polymer, which stick sands together in the BSC, increased remarkably with the increase of the dominant species until the percentage of M. vaginatus reached 80%. Our results suggest that not only the dominant species but also the accompanying taxa are critical for maintaining the structure and functions of the BSC and thus the stability of the BSC ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. 生物土壤结皮是干旱半干旱生态系统中的重要组成部分,它可通过增加土壤肥力和稳定性、影响水分再分配和植物萌发、成活、生长和繁殖而对生态系统结构和功能产生重要影响。为阐明生物结皮在内蒙古草地中的作用,本报告对两个草地生态系统进行了为期三年的调查,对生物结皮的氮素输入、对放牧的响应及其与植物的关系进行了综合研究。 2. 利用乙炔还原法,本研究对内蒙古退化草地中的生物土壤结皮中的蓝藻、地衣和地耳的氮素输入进行了为期30个月的连续测定。研究发现:1) 生物结皮固氮活性主要集中于5-10月,呈单峰型曲线,表明生物土壤结皮的固氮作用主要受温度和降雨影响;2) 生物结皮年固氮量为12.99-129.9 kg N•ha-1,98%的氮素固定于6-9月份;3) 按固氮量排序,蓝藻 (61%) > 地衣 (33%) > 地耳 (6%),表明物种组成和丰度对生物结皮的氮素输入具重要影响。生物结皮的固氮量和季节变化表明生物结皮可以是影响退化草地中植物生长和促进退化草地恢复的重要影响因子。 3. 本研究选择三个放牧处理(长期放牧、短期围封和近期放牧)对生物结皮固氮活性进行了为期3年的研究。结果表明,与短期围封相比,长期放牧造成生物土壤结皮固氮活性下降了99.5%。固氮活性在放牧时间不足11个月时即可下降至最低水平,因此,放牧持续时间短于4个月的轮牧可能有利于生物土壤结皮的固氮。 4. 本研究选择6个放牧梯度(对照:0.00 羊/公顷, 极轻度放牧:1.33羊/公顷,轻度放牧:2.67羊/公顷,中度放牧:4.00羊/公顷,重度放牧:5.33羊/公顷,极重度放牧:6.67羊/公顷),研究放牧强度对于生物结皮丰度、物种组成和固氮输入的影响。不同放牧强度对生物结皮丰度、物种组成和固氮输入具有重要影响,表明长期放牧可抑制生物土壤结皮在氮素输入和土壤固定方面的作用。极轻度放牧对生物土壤结皮影响不大;轻度放牧造成氮素输入降低了50%;重度和极重度放牧造成氮素输入降低了90%,并可使移动性较强的物种成为生物土壤结皮的优势组分,从而可抑制其土壤固定作用。因此,极轻度和轻度放牧是有利于生物土壤结皮固氮和固定土壤的草地利用方式。 5. 在处于恢复早期的一个退化草地中,我们对生物结皮和植物之间的关系进行了为期2年的研究。结果表明,生物结皮的丰度和物种组成与植物地上生物量和盖度高度相关。生物结皮丰度和氮素输入随植物生物量和盖度下降。结果还表明生物结皮是退化草地的主要氮素输入来源,尤其是在草地恢复初期。植物组织δ15N 低于土壤,这种差异随植物生产力增高而减小,表明生物结皮所固定氮素首先被植物利用,而后返回土壤。生物结皮的固氮输入变化可能是这种变化模式的主要原因,在分解作用和氮素损失中的同位素分馏,以及菌根真菌对于氮素的转运可能也是这种变化模式的原因。结果还显示生物土壤结皮与植物之间可能存在负反馈关系。这种自我调节的反馈过程可能是影响退化草地生态系统生产力和氮素循环的重要调节机制。