115 resultados para First-principles calculation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic and electronic properties of N-N split interstitial in GaN nanowires have been investigated using first principles calculations. The formation energy calculations show that the N-N interstitial favors substituting an N atom at the surface of the nanowires. The interstitial induces localized states in the band gap of GaN nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3- Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3- Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d(2)) and Cr3+ 3d (d(3)) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 mu(B) for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t(2g) (t(2g)(3)) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and mechanical properties Of UC2 and U2C3 have been systematically investigated using first-principles calculations by the projector-augmented-wave (PAW) method. Furthermore, in order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the generalized gradient approximation +U formalisms for the exchange-correlation term. We show that our calculated structural parameters and electronic properties for UC2 and U2C3 are in good agreement with the experimental data by choosing an appropriate Hubbard U = 3 eV. As for the chemical bonding nature, the contour plot of charge density and total density of states suggest that UC2 and U2C3 are metallic mainly contributed by the 5f electrons, mixed with significant covalent component resulted from the strong C-C bonds. The present results also illustrate that the metal-carbon (U-C) bonding and the carbon-carbon covalent bonding in U2C3 are somewhat weaker than those in UC2, leading to the weaker thermodynamic stability at high temperature as observed by experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the first-principles methods, we study the electronic structure, intrinsic and extrinsic defects doping in transparent conducting oxides CuGaO2. Intrinsic defects, acceptor-type and donor-type extrinsic defects in their relevant charge state are considered. The calculation result show that copper vacancy and oxygen interstitial are the relevant defects in CuGaO2. In addition, copper vacancy is the most efficient acceptor. Substituting Be for Ga is the prominent acceptor, and substituting Ca for Cu is the prominent donors in CuGaO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials in CuGaO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA) + U and generalized gradient approximation (GGA) + U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA + U approach, most of our calculated results are in good agreement with the experimental data. Therefore. the results obtained by the GGA + U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (C-11, C-12, and C-44), bulk modules B and its pressure derivatives B', compressibility beta, shear modulus G, Young's modulus Y, Poisson's ratio nu, and Lame constants (mu, lambda) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and 0 atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First principles calculations are performed to investigate the elastic and electronic properties of MFe3N (M=Co,Rh,Ir) at Pm-3m space group. The authors' calculation indicates that the three MFe3N phases are metallic and mechanically stable. For RhFe3N, the calculated lattice parameter of 3.826 A is in excellent agreement with the experimental value of 3.8292 A. The three phases are ferromagnetic with the calculated magnetic moments per f.u. being 8.92 mu(B) for CoFe3N, 9.04 mu(B) for RhFe3N, and 8.50 mu(B) for IrFe3N. The unusually large B/G ratio from 2.47 for CoFe3N and 2.45 for RhFe3N to 1.81 for IrFe3N indicates that they are ductile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate ab initio density-functional calculations are performed to investigate the relationship of the ground-state crystal structures and electronic properties of Ag2BiO3 compound. The results indicate that Ag2BiO3 in Pnna phase, in which the bismuth atoms occupy the same Wyckoff positions, exhibits metallic conductivity, while in Pnn2 and Pn phases, Ag2BiO3 exhibits semiconducting character, which is in agreement with the experimental results. Charge ordering is indeed induced by the crystal inversion twin in the Pnn2 phase compared with the Pnna phase. In the low temperature phase Pn, the charge ordering is similar to that of Pnn2 phase although it is more distorted in Pn phase. In addition, the calculation indicates that the charge ordering is caused in the 6s electron rearrangement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic behavior of Mn-doped beta-Ga2O3 is Studied from first-principles calculations within the generalized gradient approximation method. Calculations show that ferromagnetic ordering is always favorable for configurations in which two Mn ions substitute either tetrahedral or octahedral sites, and the ferromagnetic ground state is also sometimes favorable for configurations where one Mn ion substitutes a tetrahedral site and another Mn ion substitutes an octahedral site. However, the configurations of the latter case are less stable than those of the former. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic interactions in Ni-doped ZnO are calculated using GGA and GGA + U method of density functional theory. The following three cases: (i) Ni-doped ZnO, (ii) (Ni, Al)-codoped ZnO, and (iii) (Ni, Li)-codoped ZnO are studied. The ferromagnetic ordering is always favorable for the three cases within GGA method. However, the ferromagnetic state is sometimes favorable after treating within the method of GGA + U. The GGA underestimates the correlated interactions especially when the Ni ions align directly to each other. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures and absorption spectra for the perfect PbMoO4 crystal and the crystal containing lead vacancy V-Pb(2-) with lattice structure optimized are calculated using density functional theory code CASTEP. The calculated absorption spectra of the PbMoO4 crystal containing V-Pb(2-) exhibit three absorption bands peaking at 2.0 eV (620 nm), 3.0 eV (413 run) and 3.3 eV (375 nm), which are in good agreement with experimental values. The theory predicts that the 390 nm, 430 nm and 580 run absorption bands are related to the existence of V-Pb(2-) in the PbMoO4 crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Nature Science Foundation of China (Grant No. 60607015)