5 resultados para Fire severity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combination of Ni2O3 and solid acid with Bronsted acid sites and Lewis acid sites (such as HZSM-5 and H-beta) could dramatically improve fire retardancy of polyolefin, including polypropylene and linear low-density polyethylene. This is mainly attributed to the formation of a large amount of residual char from degradation products of polyolefin in the intermediate stage of combustion. Thus, the amount of flammable components diffusing into the flame zone was small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of organically modified Na+-montmorillonites (OMMTs), including two kinds of octadecylammonium modified montmorillonite with different contents of octadecylammonium and a kind of sodium dodecylsulfonate (SDSo) modified montmorillonite, were used to prepare polyamide 12 (PA12)/OMMT nanocomposites. Effects of the modifiers on degradation and fire retardancy of PA12/OMMT nanocomposites were investigated. Acid sites formed in cationic surfactant modified MMT via Hoffman decomposition could accelerate degradation of PA12 at high temperature. However, catalytic effect of the acid sites on carbonization of the degradation products promoted char barrier formation, which reduced heat release rate (HRR). Higher content of cationic surfactant in OMMT is beneficial to fire retardancy of PA12 nanocomposites and the dispersion states of OMMT have assistant effects. In contrast, Na+-montmorillonite (Na-MMT) and anionic surfactant modified MMT (a-MMT) could not form acid sites on the MMT layers; in this case, fire retardancy of PA12/Na-MMT appears to have no improvement and PA12/a-MMT appears to have limited improvement.