46 resultados para Fine sandy soil

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

34-, 17-, 4-, 1.5-year old natural algal crusts were collected from Shapotou Scientific Station of the Chinese Academy of Sciences, 40-day old field and greenhouse artificial algal crusts were in situ developed in the same sandy soil and the same place (37degrees27'N, 104degrees57'E). Their different cohesions both against wind force and pressure were measured respectively by a sandy wind-tunnel experiment and a penetrometer. On the basis of these algal crusts, the cementing mechanism was revealed from many subjects and different levels. The results showed that in the indoor artificial crusts with the weakest cohesion bunchy algal filaments were distributed in the surface of the crusts, produced few extracellular polymers (EPS), the binding capacity of the crusts just accomplished by mechanical bundle of algal filaments. For field crusts, most filaments grew toward the deeper layers of algal crusts, secreted much more EPS, and when organic matter content was more than 2.4 times of chlorophyll a, overmuch organic matter (primarily is EPS) began to gather onto the surface of the crusts and formed an organic layer in the relatively lower micro-area, and this made the crust cohesion increase 2.5 times. When the organic layer adsorbed and intercepted amounts of dusts, soil particles and sand grains scattered down from wind, it changed gradually into an inorganic layer in which inorganic matter dominated, and this made the crusts cohesion further enhanced 2-6 times. For crust-building species Microcoleus vaginatus, 88.5% of EPS were the acidic components, 78% were the acidic proteglycan of 380 kD. The uronic acid content accounted for 8% of proteglycan, and their free carboxyls were important sites of binding with metal cations from surrounding matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为了探讨当今世界使用量最大的除草剂——草甘膦的土壤环境效应,本文采用室内模拟方法,较为系统地研究了我国4类土壤:褐土、黄绵土、风沙土和红壤,共11个土样中4种主要酶类(脲酶、转化酶、磷酸酶以及脱氢酶)活性与草甘膦间的关系,计算并得到了能够表征土壤轻度污染的生态剂量值ED10。结果表明:非缓冲液法较好地反映了土壤酶的实际情况;草甘膦总体上激活土壤脲酶、转化酶和脱氢酶活性,最大增幅分别为190%、1372%和42%;抑制磷酸酶活性,最大幅度为35%;磷酸酶与草甘膦间为完全抑制作用机理;激活脱氢酶活性揭示出草甘膦导致了土壤中微生物活性增强,从侧面反映出草甘膦是一种毒性较低的农药。计算获得4类供试土壤褐土、黄绵土、风沙土和红壤ED10值分别为168.3、438.5、35.1和141.4mg·kg-1;在一定程度上用土壤酶活性比生物来表征土壤污染程度更敏感。土壤性质对草甘膦的毒性有重要影响。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文分析了生态系统稳定性的含义、影响稳定性的时间空间尺度和干扰因子;对人工林稳定性的内涵作了解释,提出了人工林稳定性的评价标准;以此作为稳定性研究的理论依据。首先分析了影响沙地樟子松人工林稳定性的各种干扰因子,通过对沙地樟子松人工林造林成活、生长情况、对不良外界环境的抗御能力、对环境影响作用的大小、林分生产力和林分结构的评价分析。最后提出维持沙地人工林稳定的对策。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

从投资回收期和益本比2个方面,对靖边县沙地马铃薯半固定式喷灌、滴灌、大型喷灌机喷灌3种灌溉方式进行经济效益分析,在经济分析的基础上,采用层次分析法,对3种灌溉方式进行综合效益评价。结果表明,半固定式喷灌、滴灌、大型喷灌机喷灌的投资回收期分别为2.1 a,0.6 a,0.9 a,效益费用比分别为2.6,7.9,7.6,滴灌的经济效益十分明显;3种灌溉方式的优劣排序为:滴灌最好,半固定式喷灌次之,大型喷灌机喷灌较差。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The latest two extreme scenarios of last glacial maximum and Holocene climatic optimum marked extreme situations in China. This paper aims to reconstruct the fossil extensions and paleoclimate of deserts in eastern China during this typical period. Aeolian sequence responds the climate change by virtue of alternation of aeolian sand layer and sandy soil layer, which correspond aridity and humidity, respectively. There is a set of contrastive deposits made up of loose sand layer and overlying dark sandy soil below land surface. This developed soil and underlying deep aeolian sand respond to H.O. and late last glacial, i.e. LGM. The typical bottom sand layers of about 50 profiles of Hulun Buir Desert, Horqin Desert and Otindag Desert were dated using OSL to confirm that they did deposid in LGM. Based on the locations of these LGM sand, distrution of gobi-desert-loess and landform control, the distribution in LGM of the three deserts were reconstructed. For the block of eastern mountain, the extreme eastern boundary of Hulun Buir Desert and Otindag Desert are not just functioned by climate background. The east of Horqin Desert is plain, hence eastern boundary of this desert is maily controlled by climate. It is considered that quite a lot of aeolian sand of LGM origined from fluvial deposit by observing regional distribution of river and SEM of sand grains. The environment alternation of of LGM-H.O. is featured by extensive expanse of active dune in LGM and grassland in H.O. Combined grain-size, susceptibility, TOC, colour and SEM measurement, the OSL chronology of relatively continued profiles since LGM of the three deserts are divided into four periods: eolian sand (15-10ka)- sandy soil (10-5ka)- alternation of black sand and yellow sand- reworking of LGM sand as destroy of soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extracellular polymeric substances (EPS) from four filamentous cyanobacteria Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green alga Desmococcus olivaceus that had been separated from desert algal crusts of Tegger desert of China, were investigated for their chemical composition, structure,and physical properties. The EPS contained 7.5-50.3% protein (in polymers ranging from 14 to more than 200 kD, SDS-PAGE) and 16.2-46.5% carbohydrate (110-460 kD, GFC). 6-12 kinds of monosaccharides, including 2-O-methyl rhamnose, 2-O-methyl glucose, and N-acetyl glucosamine were found. The main carbohydrate chains from M. vaginatus and S. javanicum consisted mainly of equal proportion of Man, Gal and Glc, that from P. tenue consisted mainly of arabinose, glucose and rhamnose. Arabinose was present in pyranose form, mainly alpha-L 1 --> 3 linked, with branches on C4 of almost half of the units. Glucose was responsible for the terminal units, in addition of having some units as beta1 --> 3 and some as beta1 --> 4 linked. Rhamnose was mainly 1 --> 3 linked with branches on C2 on half of the units. The carbohydrate polymer from D. olivaceus was composed mainly of beta1 --> 4 linked xylose, galactose and glucose. The galactose part was present both in beta-pyranose and -furanose forms. Arabinose in alpha-L-furanose form was mainly present as 1 --> 2 and 1 --> 2, 5 linked units, rhamnose only as alpha 1 --> 3 and xylose as beta 1 --> 4. The backbone of the polysaccharide from Nostoc sp. was composed of beta-1 --> 4 linked xylose, galactose and glucose. Most of the glucose was branched on position C6, terminal glucose and 2-O-methyl glucose units are also present. The relationship between structure, physical properties and potential biological function is discussed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By comparing the dynamic responses of saturated soil to Biot's and Yamamoto's models, the properties of the two models have be pointed out. First of all, an analysis has been made for energy loss of each model from the basic equations. Then the damping of elastic waves in coarse sand and fine sand with loading frequency and soil's parameters have been calculated and the representation of viscous friction and Coulomb friction in the two models has been concluded. Finally, the variations of loading wave damping and stress phase angles with water depth and soil's parameters have been obtained as loading waves range in ocean waves.