326 resultados para Fiber posts

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planar punch through heterojunction phototransistors with a novel emitter control electrode and ion- implanted isolation (CE-PTHPT) are investigated. The phototransistors have a working voltage of 3-10V and high sensitivity at low input power. The base of the transistor is completely depleted under operating condition. Base current is zero. The CE-PTHPT has an increased speed and a decreased noise. The novel CE-PTHPT has been fabricated in this paper. The optical gain of GaAlAs/GaAs CE-PTHPT for the incident light power 1.3 and 43nw with the wavelength of 0.8 mu m reached 1260 and 8108. The input noise current calculated is 5.46 x 10(-16) A/H-z(1/2). For polysilicon emitter CE-PTHPT, the optical gain is 3083 at the input power of 0.174 mu w. The optical gain of InGaAs/InP CE-PTHPT reaches 350 for an incident power of 0.3 mu w at the wavelength of 1.55 mu m. The CE-PTHPT detectors is promising as photo detectors for optical fiber communication system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si-based SiGe/Si strained MQW long-wavelength photodetectors (PD) with cycle type (Ring Shape) waveguide (CWG) and resonant-cavity-enhanced (RCE) structure have been investigated for the first time for improving the quantum efficiency and response time. The results show that the responsivities are higher than that of conventional PD with a same Ge content reported previously. In addition, RCE-PD has an obvious narrow band response with FWHM less than 6nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description, damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, a theoretical model is studied on the flow in the liquid annular film, which is ejected from a vessel with relatively higher temperature and painted on the moving solid fiber. A temperature gradient, driving a thermocapillary flow, is formed on the free surface because of the heat transfer from the liquid with relatively higher temperature to the environmental gas with relatively lower temperature. The thermocapillary flow may change the radii profile of the liquid film. This process analyzed is based on the approximations of lubrication theory and perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the liquid layer are solved for a temperature distribution on the solid fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the dynamic behaviors of several kinds of high strength fibers, including Kevlar, UHMPE, glass fibers, carbon fibers etc., are investigated experimentally, with a Split Hopkinson Tension Bar (SHTB). The effect of strain rate on the modulus, strength, failure strain and failure characteristics of fibers, under impact loading, is analyzed with the relative stress vs. strain curves. At the same time, the mechanism about the rate dependence of mechanical behaviors of various fibers is discussed based on the understanding on the microstructures and deformation models of materials. Some comments are also presented on the decentralization of experimental results, and a new method called traveling wave method is presented to increase the experimental accuracy. Research results obtained in this paper will benefit to understand the energy absorption and to build up the constitutive law of protective materials reinforced by high strength fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of microscopical analyses of the fiber distribution and longitudinal shear deformation in unidirectional fiber composites, a simple approach is presented for characterizing the interfacial sheer strength and fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact response and failure mechanisms of ultrahigh modulus polyethylene (UHMPE) fiber composites and UHMPE fiber-carbon fiber hybrid composites have been investigated. Charpy impact, drop weight impact and high strain rate impact experiments have been performed in order to study the impact resistance, notch sensitivity, strain rate sensitivity and hybrid effects. Results obtained from dynamic and quasi-static measurements have been compared. Because of the ductility of UHMPE fibers, the impact energy absorption of UHMPE fiber composites is very high, thereby leading to excellent damage tolerance. By hybridizing with UHMPE fibers, the impact properties of carbon fiber composites can be greatly improved. The impact and shock failure mechanisms of these composites are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present model is shown. The dilute, self-consistent, differential and Mori-Tanaka methods are also extended to consider randomness in fiber section orientation in a statistical sense. A full comparison is made between various micromechanics methods and with the Hashin and Shtrikman's bounds. The present method provides convergent and reasonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In brittle composites, such as whisker reinforced ceramics, the sliding of reinforcing fibers against the frictional resistance of matrix is of a pseudo-plastic deformation mechanism. High aspect-ratio whiskers possess larger pseudo-plastic deformation ability but are usually sparse, while, low aspect-ratio ones were distributed widely in the matrix and show low pseudo-plastic deformation ability (engagement effect), also. A comparative investigation was carried out in present study based on a multi-scale network model. The results indicate that the effect of low aspect-ratio whiskers is of most importance. Improving the engagement coefficient by raising the compactness of material seems a more practical way for optimization of discontinuous fiber-reinforced brittle composites in the present technological condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of fiber/matrix interfacial fracture energy is presented in this paper. Several existing theoretical expressions for the fracture energy of interfacial debonding are reviewed. For the single-fiber/matrix debonding and pull-out experimental model, a study is carried out on the effect of interfacial residual compressive stress and friction on interface cracking energy release rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lattice-type model can simulate in a straightforward manner heterogeneous brittle media. Mohr-Coulomb failure criterion has recently been involved into the generalized beam (GB) lattice model, and as a result, numerical experiments on concrete under various loading conditions can be conducted. The GB lattice model is further used to investigate the reinforced fiber/particle composites instead of only particle composites as the model did before. Numerical examples are given to show the effectiveness of the modeling procedure, and influences of inclusions (particle, fiber and rebar) on the fracture processes are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.