157 resultados para Fertility of soil

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

发展了测定实验室土样热扩散率的方法,介绍了研制的实验装置和建议的操作程序。给出的实验结果表明土壤热扩散率随土壤空隙率、含水量和温度等许多参数而变化。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot’s poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random field theory has been used to model the spatial average soil properties, whereas the most widely used, geostatistics, on which also based a common basis (covariance function) has been successfully used to model and estimate natural resource since 1960s. Therefore, geostistics should in principle be an efficient way to model soil spatial variability Based on this, the paper presents an alternative approach to estimate the scale of fluctuation or correlation distance of a soil stratum by geostatistics. The procedure includes four steps calculating experimental variogram from measured data, selecting a suited theoretical variogram model, fitting the theoretical one to the experimental variogram, taking the parameters within the theoretical model obtained from optimization into a simple and finite correlation distance 6 relationship to the range a. The paper also gives eight typical expressions between a and b. Finally, a practical example was presented for showing the methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slope failure due to rainfall is a common geotechnical problem. The mechanics of rainfall induced landslides involves the interaction of a number of complex hydrologic and geotechnical factors. This study attempts to identify the influence of some of these factors on the stability of soil slope including rainfall intensity, hydraulic conductivity and the strength parameters of soil.