2 resultados para Fauchier, Laurent
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.
Resumo:
A four-phase confocal elliptical cylinder model is proposed from which a generalised self-consistent method is developed for predicting the thermal conductivity of coated fibre reinforced composites. The method can account for the influence of the fibre section shape ratio on conductivity, and the physical reasonableness of the model is demonstrated by using the fibre distribution function. An exact solution is obtained for thermal conductivity by applying conformal mapping and Laurent series expansion techniques of the analytic function. The solution to the three-phase confocal elliptical model, which simulates composites with idealised fibre-matrix interfaces, is arrived at as the degenerated case. A comparison with other available micromechanics methods, Hashin and Shtrikman's bounds and experimental data shows that the present method provides convergent and reasonable results for a full range of variations in fibre section shapes and for a complete spectrum of the fibre volume fraction. Numerical results show the dependence of the effective conductivities of composites on the aspect ratio of coated fibres and demonstrate that a coating is effective in enhancing the thermal transport property of a composite. The present solutions are helpful to analysis and design of composites.