119 resultados para Fast Rayleigh Fading

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecular dynamics method is used to analyze the dynamic propagation of an atomistic crack tip. The simulation shows that the crack propagates at a relatively constant global velocity which is well below the Rayleigh wave velocity. However the local propagation velocity oscillates violently, and it is limited by the longitudinal wave velocity. The crack velocity oscillation is caused by a repeated process of crack tip blunting and sharpening. When the crack tip opening displacement exceeds a certain critical value, a lattice instability takes place and results in dislocation emissions from the crack tip. Based on this concept, a criterion for dislocation emission from a moving crack tip is proposed. The simulation also identifies the emitted dislocation as a source for microcrack nucleation. A simple method is used to examine this nucleation process. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3-dimensiqnal incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear instability analysis of the Rayleigh-Allarangoni-Benard convection in a two-layer system of silicon oil 10cS and fluorinert FC70 liquids are performed in a larger range of two-layer depth ratios H, from 0.2 to 5.0 for different total depth H less than or equal to 12 mm. Our results are different from the previous study on the Rayleigh-Benard instability and show strong effects of thermocapillary force at the interface on the time-dependent oscillations arising from the onset of instability convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oscillatory behaviour of the Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) regarding two combinations of two-layer fluid systems has been investigated theoretically and numerically. For the two-layer system of Silicone oil (10cSt) over Fluorinert (FC70), both linear instability analysis and 2D numerical simulation show that the instability of the system depends strongly on the depth ratio Hr = H1/H2 of the two-layer liquid. The oscillatory regime at the onset of R-M-B convection enlarges with reducing Γ = Ra/Ma values. In the two-layer system of Silicone oil (2cSt) over water, it loses its stability and onsets to steady convection at first, then the steady convection bifurcates to oscillatory convection with increasing Rayleigh number Ra. This behaviour was found through numerical simulation above the onset of steady convection in the case of r = 2.9, ε=(Ra-Ruc)/Rac = 1.0, and Hr = 0.5. Our findings are different from the previous study of the Rayleigh-Benard instability and show the strong effects of the thermocapillary force at the interface on the time-dependent oscillations at or after the onset of convection. We propose a secondary oscillatory instability mechanism to explain the experimental observation of Degen et al. [Phys. Rev. E, 57 (1998), 6647-6659].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

给出了高Bond数下黏性液滴表面Rayleigh-Taylor线性不稳定性的分析解,这种不稳定性对于超音速气流作用下液滴破碎的早期阶段起着至关重要的作用.基于稳定性分析的结果,导出了用于估算稳定液滴的最大直径及液滴无量纲初始破碎时间的计算式,这些计算式与相关文献给出的实验和分析结果比较显示了良好的一致.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rayleigh–Marangoni–Bénard convective instability (R–M–B instability) in the two-layer systems such as Silicone oil (10cSt)/Fluorinert (FC70) and Silicone oil (2cSt)/water liquids are studied. Both linear instability analysis and nonlinear instability analysis (2D numerical simulation) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. The results show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. The secondary instability phenomenon found in the real two-layer system of Silicone oil over water could explain the difference in the comparison of the Degen’s experimental observation with the previous linear stability analysis results of Renardy et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling mechanism of Rayleigh effect and Marangoni effect in a liquid-porous system is investigated using a linear stability analysis. The eigenvalue problem is solved by means of a Chebyshev tau method. Results indicate that there are three coupling modes between the Rayleigh effect and the Marangoni effect for different depth ratios. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermovibrational instability of Rayleigh-Marangoni-Benard convection in a two-layer system under the high-frequency vibration has been investigated by linear instability analysis in the present paper. General equations for the description of the convective flow and within this framework, the generalized Boussinesq approximation are formulated. These equations are dealt with using the averaging method. The theoretical analysis results show that the high-frequency thermovibrations can change the Marangoni-Benard convection instabilities as well as the oscillatory gaps of the Rayleigh-Marangoni-Benard convection in two-layer liquid systems. It is found that vertical high-frequency vibrations can delay convective instability of this system, and damp the convective flow down. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LURR theory is a new approach for earthquake prediction, which achieves good results in earthquake prediction within the China mainland and regions in America, Japan and Australia. However, the expansion of the prediction region leads to the refinement of its longitude and latitude, and the increase of the time period. This requires increasingly more computations, and the volume of data reaches the order of GB, which will be very difficult for a single CPU. In this paper, a new method was introduced to solve this problem. Adopting the technology of domain decomposition and parallelizing using MPI, we developed a new parallel tempo-spatial scanning program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

分别用分级应力法、等损伤应力法及均方根应力法对三点弯曲试件在程序块谱、窄带随机谱和宽带随机谱下的疲劳裂纹扩展进行了计算。以探讨均方根应力法是否适于三点弯曲试件在谱载下的疲劳裂纹扩展计算。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<正> 1.激波管中的流动 我们现在考虑如图1所示的电磁激波管。放电之后,有一个强激波向右传播,后面是一个电流层,它分开了等离子体与磁场。1959年,Wright和Black曾详细地研究了在放电初期电磁激波管中的流动。在假定电流i与时间t成正比之后,他们求出了一个相似解。这时电流层以等加速度a向右方运动,可以预料,这将会发生Rayleigh-Taylor不稳定性,由于加速度a大,不稳定性增长率ω也很大。 我们令电流面以等加速度a向右运动(见图2)。电流面的坐标x_0(t)与速度v_0(t)分

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we mainly deal with cigenvalue problems of non-self-adjoint operator. To begin with, the generalized Rayleigh variational principle, the idea of which was due to Morse and Feshbach, is examined in detail and proved more strictly in mathematics. Then, other three equivalent formulations of it are presented. While applying them to approximate calculation we find the condition under which the above variational method can be identified as the same with Galerkin's one. After that we illustrate the generalized variational principle by considering the hydrodynamic stability of plane Poiseuille flow and Bénard convection. Finally, the Rayleigh quotient method is extended to the cases of non-self-adjoint matrix in order to determine its strong eigenvalne in linear algebra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用基于分子动理论的直接模拟Monte Carlo(DSMC)方法,研究了 Rayleigh-Bènard问题.计算中,上下平板表面温度之比固定为0.1.Kn=0.01时,随着Ra数的增大,大约在1700附近,流动从热传导状态转变为热对流状态,DSMC计算得到的下平板热流与Ra数的关系与经典实验和理论结果相符.Kn=0.05时,流动保持稳定的热传导状态,Ra数的增大并不能引发热对流现象.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对不可压缩流体三维Rayleigh-Taylor不稳定性问题建立被动标量输运模型,用大涡模拟方法计算了正弦初始扰动和随机初始扰动下不稳定性发展各个阶段的瞬时速度度场和标量场,以及混合过程中计算尺度和亚格子尺度上的平均湍流脉动能、平均剪切应力和被动标量通量;分析了 界面形状、被动标量浓度分布的演化规律及气泡、尖钉速度和混合层宽度随时间的变化规律,计算结果与其他数值模拟和实验结果相吻合,验证了大涡模拟方法应用于该问题的可行性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective instabilities in two or more superposed layers heated from below were studied extensively by many scientists due to several interfacial phenomena in nature and crystal growth application. Most works of them were performed mainly on the instability behaviors induced only by buoyancy force, especially on the oscillatory behavior at onset of convection (see Gershuni et. Al.(1982), Renardy et. Al. (1985,2000), Rasenat et. Al. (1989), and Colinet et. Al.(1994)) . But the unstable situations of multi-layer liquid convection will become more complicated and interesting while considering at the same time the buoyancy effect combined with thermocapillary effect. This is the case in the gravity reduced field or thin liquid layer where the thermocapillary effect is as important as buoyancy effect. The objective of this study was to investigate theoretically the interaction between Rayleigh-Bénard instability and pure Marangoni instability in a two-layer system, and more attention focus on the oscillatory instability both at the onset of convection and with increasing supercriticality. Oscillatory behavious of Rayleigh-Marangoni-Bénard convective instability (R-M-B instability) and flow patterns are presented in the two-layer system of Silicon Oil (10cSt) over Fluorinert (FC70) for a larger various range of two-layer depth ratios (Hr=Hupper/Hdown) from 0.2 to 5.0. Both linear instability analysis and 2D numerical simulation (A=L/H=10) show that the instability of the system depends strongly on the depth ratio of two-layer liquids. The oscillatory instability regime at the onset of R-M-B convection are found theoretically in different regions of layer thickness ratio for different two-layer depth H=12,6,4,3mm. The neutral stability curve of the system displaces to right while we consider the Marangoni effect at the interface in comparison with the Rayleigh-Bénard instability of the system without the Marangoni effect (Ma=0). The numerical results show different regimes of the developing of convection in the two-layer system for different thickness ratios and some differences at the onset of pure Marangoni convection and the onset of Rayleigh-Bénard convections in two-layer liquids. Both traveling wave and standing wave were detected in the oscillatory instability regime due to the competition between Rayleigh-Bénard instability and Marangoni effect. The mechanism of the standing wave formation in the system is presented numerically in this paper. The oscillating standing wave results in the competition of the intermediate Marangoni cell and the Rayleigh convective rolls. In the two-layer system of 47v2 silicone oil over water, a transition form the steady instability to the oscillatory instability of the Rayleigh-Marangoni-Bénard Convection was found numerically above the onset of convection for ε=0.9 and Hr=0.5. We propose that this oscillatory mechanism is possible to explain the experimental observation of Degen et. Al.(1998). Experimental work in comparison with our theoretical findings on the two-layer Rayleigh-Marangoni-Bénard convection with thinner depth for H<6mm will be carried out in the near future, and more attention will be paid to new oscillatory instability regimes possible in the influence of thermocapillary effects on the competition of two-layer liquids