32 resultados para Factors (Algebra)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The algebraic formulas of 1.5 and 2.5 rank which can be applied to estimating +/- pi/2 type of phases for P2(1)2(1)2(1) space group were derived using the method of structure factor algebra. Both types of the formulas are satisfactory for two known crystal structures in estimating their +/- pi/2 type of phases.
Resumo:
The liquefaction of loess under dynamic loading is studied experimentally with a dynamic triaxial test system. The effects of over-consolidation ratio (OCR), saturation degree and the frequency of dynamic loading upon loess liquefaction are investigated. The development of pore pressure within loess samples is also discussed. Based on the experimental results, the empirical relationship between pore pressure ratio and loading cycle number ratio is established for normal consolidated saturated loess.
Resumo:
Turbidity measurement for the absolute coagulation rate constant of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor to derive the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed in the aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion about the physical insight of using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the calculated data of the optical factor by the T-matrix method for a range of particle radii and incident light wavelengths are listed.
Resumo:
This paper presents the mode I stress intensity factors for functionally graded solid cylinders with an embedded penny-shaped crack or an external circumferential crack. The solid cylinders are assumed under remote uniform tension. The multiple isoparametric finite element method is used. Various types of functionally graded materials and different gradient compositions for each type are investigated. The results show that the material property distribution has a quite considerable in influence on the stress intensity factors. The influence for embedded cracks is quite different from that for external cracks.
Resumo:
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modi. cation process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.
Resumo:
Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
Resumo:
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
Resumo:
The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.
Resumo:
In this paper, new formulae of a class of stress intensity factors for an infinite plane with two collinear semi-infinite cracks are presented. The formulae differ from those gathered in several handbooks used all over the world. Some experiments and finite element calculations have been developed to verify the new formulae and the results have shown its reliability. Finally, the new formulae and the old are listed to show the differences between them.
Resumo:
Some factors that affect the experimental results in nanoindentation tests such as the contact depth, contact area, load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation, we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardness decrease can be bated if the continuous stiffness measurement technique is not adopted; this indicates that the test method itself may also be one of the factors causing the hardness being descended.
Resumo:
Variations of peak position of the rocking curve in the Bragg case are measured from a Ge thin crystal near the K-absorption edge. The variations are caused by a phase change of the real part of the atomic scattering factor. Based on the measurement, the values of the real part are determined with an accuracy of better than 1%. The values are the most reliable ones among those reported values so far as they are directly determined from the normal atomic scattering factors.