18 resultados para FORMACIÓN INTEGRAL

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four types of the fundamental complex potential in antiplane elasticity are introduced: (a) a point dislocation, (b) a concentrated force, (c) a dislocation doublet and (d) a concentrated force doublet. It is proven that if the axis of the concentrated force doublet is perpendicular to the direction of the dislocation doublet, the relevant complex potentials are equivalent. Using the obtained complex potentials, a singular integral equation for the curve crack problem is introduced. Some particular features of the obtained singular integral equation are discussed, and numerical solutions and examples are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventional J_2 deformation theory No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory Two typical crack Problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by use of the boundary integral equation method and the techniques of Green basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is also investigated. By use of the high precision numerical method for the singular integral equation and Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that the method of this paper is successful and can be used to solve more complicated problems. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the idea proposed by Hu [Scientia Sinica Series A XXX, 385-390 (1987)], a new type of boundary integral equation for plane problems of elasticity including rotational forces is derived and its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to demonstrate the accuracy of the new type of boundary integral equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the Faddeev-Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In terms of the quantitative causal principle, this paper obtains a general variational principle, gives unified expressions of the general, Hamilton, Voss, Holder, Maupertuis-Lagrange variational principles of integral style, the invariant quantities of the general, Voss, Holder, Maupertuis-Lagrange variational principles are given, finally the Noether conservation charges of the general, Voss, Holder, Maupertuis-Lagrange variational principles axe deduced, and the intrinsic relations among the invariant quantities and the Noether conservation charges of all the integral variational principles axe achieved.