13 resultados para FORCE CONTROL
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
在对机器人腕力传感器信号特点分析基础上,提出了应用小波变换对腕力传感器信号进行滤波的方法,讨论了小波滤波算法,研究了机器人腕力传感器信号滤波方案,并针对抛光机器人作业实验数据进行滤波。仿真实验表明方法有效。
Resumo:
研磨机器人系统中,研磨头与工件的接触力是保证加工精度,进行机器人力控制的一个重要因 素。采用 CAN 通讯可以确保力传感器准确、及时地把力信息传送给控制器进行力控制。本文 给出了6维腕力传感器与机器人控制器通讯的硬件结构,制定了可靠的通讯协议,实现了力信 息的正确读取,为研磨机器人控制系统获得可靠的力信息提供了一种新的解决方案。
Resumo:
针对柔性关节机械臂从自由空间运动控制过渡到约束空间力控制的过程中,存在冲击、震荡甚至不稳定等问题,利用加速度传感器反馈控制,为柔性关节机械臂的接触力控制在较宽的带宽内提供阻尼,克服了利用单纯速度反馈控制带宽窄的局限。对柔性关节机械臂的接触力控制进行建模和基于加速度反馈的控制策略分析,并在柔性关节机械臂上进行了接触力控制的试验研究。结果表明,这种方法有效。
Resumo:
提出了基于水下作业系统阻抗力控制的水下矩形围壁定位方法。水下作业系统末端执行器跟踪期望运动轨迹,通过与水下矩形围壁环境表面接触力反馈信息的变化获得与环境接触的特殊点,计算得到矩形围壁环境相对水下作业系统的位姿。以带有三自由度机械手的水下作业系统为例进行水下矩形围壁目标表面恒力跟踪的计算机仿真,仿真结果表明定位方法可以很好的获得矩形围壁环境的位姿,控制策略具有很好的表面跟踪和力控制能力。
Resumo:
机器人已成为进一步实现制造业、非制造业、军事活动以至家庭服务自动化的重要工具.机器人学则是更综合地研究如何使机器或系统具有“思想、感知或动作功能的一门交叉性新学科”.机器人的发展是波浪式的,经历了多次的曲折.目前工业机器人中除装配机器人外,其他点焊、弧焊、喷漆及搬运机器人,由于应用范围限制,以及工业生产装备更新速度和投资规模的影响,市场日趋饱和.以美国为例.制造商订单1984年达到高峰6046台.至1986年下降至5713台,不过对机器人未来市场大都持乐观态度.但进一步开拓市场.有待于推出适用于各种环境作业的各式各样的机器人.日本东京大学教授认为机器人当前处于又一次高潮的前夜(Nightmare),正是需要大力加强研究开发的时期.我国正在着手建立工业机器人产业,这一情况值得我们注意.本文着重从研究角度来介绍当前机器人及机器人学中的控制问题的现状及主要问题.
Resumo:
本文介绍在 PUMA760 上实现了的切割作业控制系统。我们在 PUMA760 控制系统中引进了力传感器信号,加入了力控制算法,通过调整机器人手部位置,控制机器人与环境物体间的相互作用力。在 VAL 系统中加入了根据传感器信号动作的指令,实现了一种机器人力与位置的混合控制。用扩充后的 VAL 系统编程,成功地使 PUMA760完成了多种材料的切割作业。
Resumo:
介绍了长焊缝激光拼焊系统的工作原理和控制要求。针对长焊缝激光拼焊的难点,提出了焊缝塑性成形原理,采用碾压轮对板材焊缝进行碾压预处理提高定位精度。阐述了牵引电机同步控制原理和碾压轮力控制原理。详细介绍了该系统的组成和工作原理,确定了以三菱PLC为核心的长焊缝激光拼焊的控制系统,说明了其硬件组成、软件设计和控制系统的抗干扰措施。
Resumo:
We suggest a local pinning feedback control for stabilizing periodic pattern in spatially extended systems. Analytical and numerical investigations of this method for a system described by the one-dimensional complex Ginzburg-Landau equation are carried out. We found that it is possible to suppress spatiotemporal chaos by using a few pinning signals in the presence of a large gradient force. Our analytical predictions well coincide with numerical observations.
Resumo:
It was studied that the nanostructure formed on a gold surface via a simple oxidation-reduction cycles (ORC) in 0.1 M KCl containing Ru(bpy)(3)(2+) with different concentrations. Atomic force microscopy (AFM) and energy-dispersed spectroscopy (EDS) were used to characterize the nanostructure formed on the gold surface. Sweep-step voltammetry and corresponding electroluminescence (ECL) response, in situ electrochemical quartz crystal microbalance (EQCM) measurement were used to monitor the ORC. procedure. It was found that the surface structure became more uniform in the presence of Ru(bpy)(3)(2+), and the surface roughness was decreasing with the increasing of Ru(bpY)(3)(2+) concentration, suggesting a simple and effective method to control the formation of nanostructure on the gold surface.
Resumo:
Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.
Resumo:
The surface morphologies of poly(styrene-b-4vinylpyridine) (PS-b-P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (phi(PS)) in the mixture. It was found that when hPS was added into symmetric PS-b-P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With phi(PS) increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in phi(PS) is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated.
Resumo:
The effects of the molecular weights (molecular weight of polystyrene, M-w,M-PS, varying from 2.9 to 129 k) on the surface morphologies of spin-coated and annealed polystyrene/poly (methyl methacrylate) (PS/PMMA = 50/50, w/w) blend films were investigated by atomic force microscopy and X-ray photoelectron spectroscopy. For the spin-coated films, when the M-w,M-PS varied from 2.9 to 129 k, three different kinds of surface morphologies (a nanophase-separated morphology, a PMMA cellular or network-like morphology whose meshes filled with PS, a sea-island like morphology) were observed and their formation mechanisms are discussed, respectively. Upon annealing, two different morphology-evolution processes were observed. It is found that a upper PS-rich phase layer is formed when M-w,M-PS < 4 k, and this behavior is mainly attributed to the low interfacial tension between PS and PMMA component. When M-w,M-PS > 4 k, the PS-rich phase forms droplets on top of the PMMA-rich phase layer which wets the SiOx substrate. These results indicate that the surface morphology of the polymer blend films can be controlled by the polymer molecular weight and annealing conditions.
Resumo:
The influences of different cations on plasmid DNA network structures on a mica substrate were investigated by atomic force microscopy (AFM). Interactions between the DNA strands and mica substrate, and between the DNA strands themselves were more strongly influenced by the complex cations (Fe(phen)(3)(2+), Ni(phen)(3)(2+), and Co(phen)(3)(3+)) than by the simple cations (Mg2+, Mn2+, Ni2+, Ca2+, Co3+). The mesh height of the plasmid DNA network was higher when the complex cations were added to DNA samples. The mesh size decreased with increasing DNA concentration and increased with decreasing DNA concentration in the same cation solution sample. Hence, plasmid DNA network height can be controlled by selecting different cations, and the mesh size can be controlled by adjusting plasmid DNA concentration.