30 resultados para FIR filters
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new set of continuous superresolution filters is proposed which exhibits a radial superresolution performance with an extended depth of focus in an optical system by properly choosing the design parameters. Numerical simulation results of the performance parameters of the superresolution gain, the radial central core size, the Strehl ratio, the side-lobe factor and the depth of focus with different design parameters for the optimized patterns are displayed. We also give a design example for this kind of filter characterized by a birefringent element inserted between two parallel polarizers. This kind of filter would be useful in fields such as optical data storage systems.
Resumo:
A two-mode adjustable superresolving filter based on a birefringent filter is proposed. This kind of filter has superresolution in two modes of adjustment. One is rotation of the binary pupil filter on the optical axis of the system and the other is the tilt of the filter away from the pupil plane on axis parallel or perpendicular to the optical axis of the crystal. The filters act as complex amplitude filters in the former mode, and as pure phase filters in the latter. By analyzing two superresolving parameters, we obtain the optimal design parameters that ensure a large field of view, a large superresolving range, and a high setting accuracy. This kind of filter can provide more flexibility in practical applications. (c) 2006 Optical Society of America.
Resumo:
Complex pupil filters are introduced to improve the three-dimensional resolving power of an optical imaging system. Through the design of the essential parameters of such filters, the transmittance and radius of the first zone, three-dimensional superresolution is realized. The Strehl ratio and the transverse and axial gains of such filters are analyzed in detail. A series of simulation examples of such filters are also presented that prove that three-dimensional superresolution can be realized. The advantage of such filters is that it is easy to realize three-dimensional superresolution, and the disadvantage is that the sidelobes of the axial intensity distribution are too high. But this can be overcome by the application of a confocal system. (C) 2005 Optical Society of America.
Resumo:
This paper investigates the influences of phase shift on superresolution performances of annular filters. Firstly, it investigates the influence of phase shift on axial superresolution. It proves theoretically that axial superresolution can not be obtained by two-zone phase filter with phase shift pi, and it gets the phase shift with which axial superresolution can be brought by two-zone phase filter. Secondly, it studies the influence of phase shift on transverse superresolution. It finds that the three-zone phase filter with arbitrary phase shift has an almost equal optimal transverse gain to that of commonly used three-zone phase filter, but can produce a much higher axial superresolution gain. Thirdly, it investigates the influence of phase shift on three-dimensional superresolution. Three-dimensional superresolution capability and design margin of three-zone complex filter with arbitrary phase shift are obtained, which presents the theoretical basis for three-dimensional superresolution design. Finally, it investigates the influence of phase shift on focal shift. To obtain desired focal shifts, it designs a series of three-zone phase filters with different phase shifts. A spatial light modulator (SLM) is used to implement the designed filters. By regulating the voltage imposed on the SLM, an accurate focal shift control is obtained.
Resumo:
A new set of pure phase filters for realizing transverse superresolution is presented in this paper. The filters, whose significant features are their ability to tune and their simplicity, consist of one half-wave plate between two quarter-wave plates; the half-wave plate is made of two zones that can rotate with respect to each other. By rotating any zone of the half-wave plate, the central lobe width of the irradiance point spread function (PSF) in the transverse direction can be tunably reduced. At the same time, the axial intensity distribution is analysed in detail.
Resumo:
We design three-zone annular filters to be applied to optical storage system. The designed filters extend the depth of focus and realize transverse superresolution simultaneously, which will improve the performance of optical storage system greatly. And we propose two feasible schemes to improve imaging resolution of three-dimensional imaging system. One scheme depends on a complex filter formed by cascading of a three-zone phase filter and a three-zone amplitude filter. The complex filter converge the optimized transverse superresolution and the optimized axial superresolution of two different filters onto a single filter. It can improve the three-dimensional imaging performances greatly. Another scheme depends on a single three-zone complex filter. We propose a three-zone complex filter with phase shift 0.8 pi, which presents bigger design margin, better imaging quality and stronger three-dimensional superresolution capability. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Super-resolution filters based on a Gaussian beam are proposed to reduce the focusing spot in optical data storage systems. Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions. Their performances are analysed and compared with those based on plane wave in detail. The energy utilizations are presented. The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.
Resumo:
Color filters are key components in an optical engine projection display system. In this paper, a new admittance-matching method for designing and fabricating the high performance filters is described, in which the optimized layers are limited to the interfaces between the stack (each combination of quarter-wave-optical-thickness film layers is called a stack) and stack, or between stack and substrate, or between stack and incident medium. This method works well in designing filters containing multiple stacks such as UV-IR cut and broadband filters. The tolerance and angle sensitivity for the designed film stacks are analyzed. The thermal stability of the sample color filters was measured. A good result in optical performance and thermal stability was obtained through the new design approach. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Electric fields inside guided-mode resonance filters (GMRFs) may be intensified by resonance effects. The electric field enhancement is investigated in two GMRFs: one is resonant at normal incidence, the other at oblique incidence. It is shown that the two GMRFs exhibit different behaviors in their electric enhancement. Differences between the electric field distributions of the two GMRFs arise because coupling between counter-propagating modes occurs in the first case. It is also shown that the order of the electric field of maximum amplitude can be controlled by modulation of the dielectric constant of the grating. (c) 2006 Optical Society of America.
Resumo:
Optical filters composed of Ag, Al2O3, and ZnSe films were prepared on BK7 substrates by evaporation. By employing spectrophotometer, microscope, scanning electron microscope (SEM), and energy dispersive spectrum (EDS) analysis, the moisture-dependent stability of the samples was tested. The experimental results revealed that filter failure often occurs initially at defect sites. Small sputtering particles and pinhole are found to be two types of defects that induced the optical coating filter failure. The mechanisms of the defect-induced failure of the filters also are discussed in the article. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Color filters are key components in an optical engine projection display system. In this paper, a new admittance-matching method for designing and fabricating the high performance filters is described, in which the optimized layers are limited to the interfaces between the stack (each combination of quarter-wave-optical-thickness film layers is called a stack) and stack, or between stack and substrate, or between stack and incident medium. This method works well in designing filters containing multiple stacks such as UV-IR cut and broadband filters. The tolerance and angle sensitivity for the designed film stacks are analyzed. The thermal stability of the sample color filters was measured. A good result in optical performance and thermal stability was obtained through the new design approach. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The laser-induced damage (LID) behavior of narrow-band interference filters was investigated with a Nd:YAG laser at 1064 nm under single-pulse mode and free-running mode. The absorption measurement of such coatings was performed with surface thermal lensing (STL) technique. The damage morphologies under the two different laser modes were also studied in detail. It was found that all the filters exhibited a pass-band-center-dependent absorption and laser-induced damage threshold (LIDT) behavior, but the damage morphologies were diverse. The explanation was given with the analysis of the electric field distribution and the operational behavior of the irradiation laser. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electric field distributions inside resonant reflection filters constructed using planar periodic waveguides are investigated in this paper. The electric fields may be intensified by resonance effects. Although the resonant reflection peaks can be quite narrow using weakly modulated planar periodic waveguides, the strong electric field enhancement limits their use in high-power laser systems. Strongly modulated waveguides may be used to reduce the electric field enhancement and a cover layer may be used to narrow the bandwidth at the same time. Desired results (i.e. almost no electric field enhancement together with narrow bandwidth) can be realized using this simple structure.
Resumo:
Unless the fabrication error control is well treated, it easily causes overetched fabrication errors, which causes the resonant peak value deviation during the fabrication process of guided-mode resonant filters (GMRFs). Hence, the fabrication error control becomes a key point for improving the performance of GMRF. We find that, within the range of the groove depth from 93 to 105 nm, the relationship between the overetched error and the resonant peak value deviation is nearly linear, which means that we can compensate the reflectance response deviation and reduce the resonant peak value deviation by the method of covering the layer film on the GMRF. Simulation results show that the deviation is compensated perfectly by this way. (C) 2008 Optical Society of America