10 resultados para FAO-56

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

该研究以小型自动气象站观测资料为基础,采用FAO Penman-Monteith方法估算三江源区人工草地参考作物蒸散量,并结合FAO-56推荐的综合作物系数值进行草地实际蒸散量的计算,分析了三江源区人工草地实际蒸散量的变化及其与气象因子的关系。结果表明,草地实际蒸散量的季节变化为单峰曲线,夏季日蒸散量明显大于冬季,在8月中旬达到年度最高值。蒸散与空气温度、太阳辐射和相对湿度均显著相关,但与风速的相关性不显著。各气象因子对人工草地蒸散量影响的大小顺序为:空气温度(T)>太阳辐射(Ra)>空气相对湿度(RH)>风速(u2)。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

【目的】研究祁连山北坡草地蒸散与其环境因子的关系,为该牧区草场的科学经营、草地退化的防治以及区域草地生态环境建设等提供科学依据。【方法】以小型自动气象站(HOBO Weather Station,U.S.A)气象观测资料为基础,采用FAO Penman-Monteith方法估算了祁连山北坡草地参考作物蒸散量(ET_0),并结合FAO-56的推荐值,分析了草地实际蒸散量(ETc)的动态变化,同时模拟研究了相关环境因子对实际蒸散量的影响。【结果】夏季(7和8月)草地的实际蒸散量较大,冬季(12和1月)较小,在7月中旬达到年度最高值,平均为3.40mm/d;按相关系数的高低,环境因子对实际蒸散量的影响表现为空气温度〉空气相对湿度〉土壤含水量(0~40cm)〉太阳辐射〉风速;土壤水分对实际蒸散量的影响表现为土壤深度越大,土壤水分对实际蒸散量的影响越小;太阳辐射量与实际蒸散量呈线性关系。【结论】祁连山北坡草地实际蒸散量的年际变化符合当地环境的变化规律,环境因子对其不同程度的影响表明,在今后的草场管理、退化防止、生态建设中应采取适的措施,以确保草地的良性发展。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

通过 4 1 0MeV82 Se轰击天然Ba靶引起的深部非弹反应布居产生了类弹和类靶余核的激发态 ,利用在束γ谱学方法测量了它们的退激γ .通过γ -γ符合测量估计了类弹、类靶余核激发态的产生截面 ,在多个类靶余核中观测到了新γ跃迁 ,并建立了136 Ba的新能级纲图 ,说明利用深部非弹反应研究Z≈ 56,N≈ 80区高自旋态是有效、可行的

Relevância:

20.00% 20.00%

Publicador:

Resumo:

根据1951—2006年的气温和降水资料,研究了干旱少雨、生态环境脆弱、土地荒漠化严重的科尔沁沙地近56年的气候变化特征。结果表明:1951—2006年,科尔沁沙地的气温以0.28℃.10a-1的速度上升,远大于全球近50年来0.13℃.10a-1的平均增温速率;各季节气温都呈上升趋势,冬、春季增温速率极显著(P<0.001),增温速率分别为0.46和0.39℃.10a-1;年最高气温(0.17℃.10a-1)与年最低气温(0.42℃.10a-1)均呈极显著地增加趋势(P<0.01);降水量年际间波动较大,无明显的变化趋势,各季节降水量也没有明显的变化规律;年降水日数呈显著减少趋势(1.3d.10a-1),各季的降水日数虽都有逐年减少趋势,但没有达到显著水平;年降水强度和各季降水强度都没有明显的变化规律;年总小雨日数呈显著的减少趋势(P<0.05),减少速率为1.0d.10a-1。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用聚乙烯醇-海藻酸钠(PVA-Na.A lg)联合包埋固定化一株黄杆菌O il-56,进行污染地表水修复实验研究,结果表明固定化细菌的修复效果明显好于游离细菌。同时利用扫描电子显微镜观察了固定化颗粒内部细菌形态的变化,解释了由于Na.A lg溶解导致水体CODC r升高的原因,并分析了固定化颗粒传质扩散性能的缺陷,指出PVA-Na.A lg固定化工艺尚需改进。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of 1,10-phenanthroline (phen), lanthanide chlorides LnCl3 reacted with cyclopentadienylsodium to give the novel complexes [Na.3phen]+[Ln(C5H5)3Cl]-.phen (Ln = La, Pr or Nd). In the praseodymium case, crystal structure analysis showed that