19 resultados para Extracellular signal-regulated kinase
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Stress is the most important factor in the vulnerability to depression and other behavioral disorders, but the mechanisms that stress signals are transferred into depression are far from understanding. To date, the neurotransmitters, neurotrophins and signal pathway have been concerned in the topic focusing on the pathophysiology of depression, but there are still many puzzles. Increasing evidence has indicated that the alteration in neuronal plasticity is the “trace” of stress-induced damages. The extracellular signal-regulated protein kinase(ERK)-cyclic-AMP-responsive element(CRE)-binding protein(CREB)signal pathway is a powerful intracellular signal transduction pathway participating in neuronal plasticity which is involved in higher brain cognitive functions such as learning and memory. However, so far, little is known about the role of the ERK-CREB signal pathway in response to stress and emotional modulations. Thus the aim of the study was to systematically investigate the role of the ERK-CEB signal pathway in depressive-like behaviors induced by stress. Depression animal models, antidepressant agent treatment and disruption of signal pathway in specific brain regions were applied. In the present study, three experiment sessions were designed to make sure whether the ERK-CREB signal pathway was indeed one of pathophysiological mechanisms of depressive-like behaviors induced by stress. In experiment one, two different stress animal models were applied, chronic forced swim stress and chronic empty water bottle stress. After stress, all animals were tested behaviorally using open-field, elevated-plus maze and saccharine preference test, and brain samples were processed for determination of ERK, P-ERK, CREB and P-CREB using western blot. The relationships between the proteins of ERK, P-ERK, CREB and P-CREB in the brain and the behavioral variables were also analyzed. In experiment two, rats were treated with antidepressant agent fluoxetine once a day for 21 consecutive days, then the brain levels of ERK, P-ERK, CREB and P-CREB was determined, the depressive-like behaviors were also examined. In experiment three, mitogen activated extracellular-signal-regulated kinase kinase (MEK) inhibitor U0126 was administrated to inhabit the activation of ERK in the hippocampus and prefrontal cortex respectively, then behavioral measurements and protein detection were conducted. The main results of the study were as the following: (1) Chronic forced swim stress induced animals to suffer depression and disrupted the ERK-CREB signal pathway in hippocampus and prefrontal cortex. There were significant correlations between P-ERK2, P-CREB and multiple variables of depressive-like behaviors. (2) Chronic empty water bottle stress did not induce depressive-like behaviors. Such stress decreased the brain level of P-ERK2 in hippocampus and prefrontal cortex, but the level of P-CREB in the hippocampus was increased. (3) The antidepressant agent fluoxetine relieved depressive-like behaviors and increased the activities of the ERK-CREB signal pathway in stressed animals. (4) Animals treated with U0126 injection into hippocampus showed decreased activities of the ERK-CREB signal pathway in the hippocampus, and suffered depression comorbid with anxiety. (5) Animals treated with U0126 injection into prefrontal cortex showed decreased activities of the ERK-CREB signal pathway in the prefrontal cortex, and exhibited depressive-like behaviors. In conclusion, The ERK-CREB signal pathway in the hippocampus and prefrontal cortex was involved in stress responses and significantly correlated with depressive-like behaviors; The ERK-CREB signal pathway in the hippocampus and prefrontal cortex participated in the mechanism that fluoxetine reversed stress-induced behavioral disorders, and might be the target pathway of the therapeutic action of antidepressants; The disruption of the ERK-CREB signal pathway in the hippocampus or prefrontal cortex led to depressive-like behaviors in animals, suggesting that disruption of ERK-CREB pathway in the hippocampus or prefrontal cortex was involved in the pathophysiology of depression, and might be at least one of the mechanisms of depression induced by stress.
Resumo:
Proteins of the DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) family are characterized by the presence of a conserved kinase domain and N-terminal DH box. DYRK2 is involved in regulating key developmental and cellular processes, such as neurogenesis, cell proliferation, cytokinesis, and cellular differentiation. Herein, we report that the ortholog of DYRK2 found in zebrafish shares about 70% identity with that of human, mouse, and chick. RT-PCR showed that DYRK2 is expressed maternally and zygotically. In-situ hybridization results show that DYRK2 is expressed in somite cells that will develop into muscles. Our results provide preliminary evidence for investigating the in-vivo function of DYRK2 in zebrafish muscle development.
Resumo:
The heme-regulated initiation factor 2 alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2 alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly PC treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2a kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Partial cDNA sequences of both CD8 beta and CD4-like (CD4L) genes of common carp (Cyprinus carpio L.) were isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp CD8 and CD4L were obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp CD8 is 1164 bp and encodes 207 amino acids including a signal peptide region of 24 amino acids, a transmembrane region of 23 amino acids from aa 167 to aa189 and an immunoglobulin V-set from aa 19 to aa 141. Similar to other species CD8 beta s,carp CD8 beta also lacks p56(lck) domain in the cytoplasmic region. The full length cDNA of carp CD4L is 2001 bp and encodes 458 amino acids including four immunoglobulin (Ig)-like domains in the extracellular region, a transmembrane region of 23 amino acids at the C-terminal region from aa 402 to aa 424 and a cytoplasmic tail. Similar to mammalian, avian CD4s and fugu CD4L, carp CD4L also has the conserved p56(lck) tyrosine kinase motif (C-X-C) in the cytoplasmic region. RT-PCR analysis demonstrated that carp CD8 beta and CD4L genes were both expressed predominantly in thymus. The results from this study can be used to understand the evolution of both the CD8 beta and CD4 molecules which can be used as markers for cytotoxic and helper T cells in carp. (c) 2007 Published by Elsevier Ltd.
Resumo:
The species-specific production of extracellular phosphatases in phytoplankton of a subtropical polymictic take was investigated from March to May 2004. Phosphatase activity was detected directly at the site of enzyme action using the enzyme-labelled fluorescence (ELF) technique. Size fractionation of bulk phosphatase activity (PA), concentrations of soluble reactive phosphorus (SRP), chlorophyll a, and phytoplankton composition were determined in parallel. Phosphatase-positive cells were present in every phytoplankton sample; labelled cells were detected in 33 algal taxa, including many chlorophytes, dinoflagellates and some diatoms, but never among cyanobacteria. We recorded an unusual dinoflagellate bloom (Peridiniopsis sp.), of which similar to 25% of the cells were phosphatase-positive. Several populations were partly phosphatase-positive whenever present, while some other species never showed any activity. The production of extracellular phosphatases was not primarily regulated by ambient P concentrations; algae produced these enzymes even if SRP concentrations were high. Moreover, heterotrophic nanoflagellates most probably contributed to the pool of particle-bound PA in some samples.
Resumo:
Anabaena sp. PCC; 7120 was mutagenized by transposon Tn5-1087b, generating a mutant whose heterocysts lack the envelope polysaccharide layer. The transposon was located between nucleotides 342 and 343 of alr0117, a 918 bp gene encoding a histidine kinase for a two-component regulatory system. Complementation of the mutant with a DNA fragment containing alr0117 and targeted inactivation of the gene confirmed that alr0117 is involved in heterocyst development. RT-PCR showed that alr0117 was constitutively expressed in the presence or absence of a combined-nitrogen source. hepA and patB, the two genes turned on during wild-type heterocyst development, were no longer activated in an alr0117-null mutant. The two-component signal transduction system involving alr0117 may control the formation of the envelope polysaccharide layer and certain late events essential to the function of heterocysts.
Resumo:
Type I interferon (IFN) exerts its pleiotropic effects mainly through the JAK-STAT signaling pathway, which is presently best described in mammals. By subtractive suppression hybridization, two fish signaling factors, JAK1 and STAT1, had been identified in the IFN-induced crucian carp Carassius auratus L. blastulae embryonic (CAB) cells after treatment with UV-inactivated grass carp hemorrhagic virus (GCHV). Further, the full-length cDNA of STAT1, termed CaSTAT1, was obtained. It contains 2926 bp and encodes a protein of 718 aa. CaSTAT1 is most similar to rat STAT1 with 59% identity overall and displays all highly conserved domains that the STAT family possesses. Like human STAT1beta, it lacks the C-terminus acting as transcriptional activation domain in mammals. By contrast, only a single transcript was detected in virus-induced CAB cells. Expression analysis showed that CaSTAT1 could be activated by stimulation of CAB cells with poly I:C, active GCHV, UV-inactivated GCHV or CAB IFN, and displayed diverse expression patterns similar to that of mammalian STATI. Additionally, the expression of an antiviral gene CaMx1 was also induced under the same conditions, and expression difference between CaSTAT1 and CaMx1 was revealed by induction of CAB IFN. These results provide molecular evidence supporting the notion that the fish IFN signaling transduction pathway is similar to that in mammals. Fish IFN exerts its multiple functions, at least antiviral action, through a JAK-STAT pathway. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In cyanobacteria, the isiA gene is required for cell adaptation to oxidative damage caused by the absence of iron. We show here that a putative Ser/Thr kinase gene, pkn22 (alr2052), is activated by iron deficiency and oxidative damage in Anabaena sp. PCC 7120. A pkn22 insertion mutant is unable to grow when iron is limiting. pkn22 regulates the expression of isiA (encoding CP43') but not of isiB (encoding flavodoxin) and psbC (CP43). Fluorescence measurement at 77 K reveals the absence of the typical signature of CP43' associated with photosystem I in the mutant under iron-limiting conditions. We propose that Pkn22 is required for the function of isiA/CP43' and constitutes a regulatory element necessary for stress response. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in 'speckles' in the nucleus of interphase cells(1). It is believed that nuclear speckles act as storage sites for splicing factors while splicing occurs on nascent transcripts(2). Splicing factors redistribute in response to transcription inhibition(3,4) or viral infection(5), and nuclear speckles break down and reform as cells progress through mitosis(6). We have now identified and cloned a kinase, SRPK1, which is regulated by the cell cycle and is specific for SR proteins; this kinase is related to a Caenorhabditis elegans kinase and to the fission yeast kinase Dsk1 (ref. 7). SRPK1 specifically induces the disassembly of nuclear speckles, and a high level of SRPK1 inhibits splicing in vitro. Our results indicate that SRPK1 mag have a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells, and the reorganization of nuclear speckles during mitosis.
Resumo:
In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.
Resumo:
We report on the development of a new class of kinase microarray for the detection of kinase inhibition based on marking peptide phosphorylation/biotinylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase (PKA), and its well-known substrate, kemptide, were used for the purpose of monitoring phosphorylation and inhibition. As expected, highly selective inhibition of PKA is demonstrated with the four inhibitors: H89, HA1077, mallotoxin, and KN62. Furthermore, an inhibition assay demonstrates the ability to detect kinase inhibition as well as derive IC50 (half-maximal inhibitory concentration) plots.
Resumo:
We uncover the underlying potential energy landscape for a cellular network. We find that the potential energy landscape of the mitogen-activated protein-kinase signal transduction network is funneled toward the global minimum. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. Funneled landscape is a realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.
Resumo:
Plant extracellular calmodulin (CaM) has been purified from cauliflower and identified with NAD kinase(NADK) activation and inhibition effect of CaM antagonist W7, Tb-3.1 fluorescence titration showed that extracellular CaM contained four metal-binding sites, The excitation spectrum and emission specturm indicated that extracellular CaM contained one tyrosine residue which could transfer energy to bound Tb3+. Based on Forster type nonradiative energy transfer theory, the distances of Tyr-->sites III, IV have been determined, these are 1. 104 nm(Tyr --> III, site) and 1. 056 nm(Tyr --> N, site). By studing the effect of CaM antagonist W7 and CaM antibody on Tb3+-sensitized fluorescence, it was found that the binding sites of W7 and antibody were located on the c-terminal part of plant extracellular CaM which contains domain III and domain IV.
Resumo:
Artemia has evolved a unique developmental pattern of encysted embryos to cope with various environmental threats. Cell divisions totally cease during the preemergence developmental stage from gastrula to prenauplius. The molecular mechanism of this, however, remains unknown. Our study focuses on the involvement of p90 ribosomal S6 kinase (RSK), a family of serine/threonine kinase-mediating signal transduction downstream of mitogen-activated protein kinase cascades, in the termination of cell cycle arrest during the post-embryonic development of Artemia-encysted gastrula. With immunochemistry, morphology, and cell cycle analysis, the identified Artemia RSK was established to be specifically activated during the post-embryonic and early larval developmental stages when arrested cells of encysted embryos resumed mitoses. In vivo knockdown of RSK activity by RNA interference, kinase inhibition, and antibody neutralization consistently induced defective larvae with distinct gaps between the exoskeleton and internal tissues. In these abnormal individuals, mitoses were detected to be largely inhibited in the affected regions. These results display the requirement of RSK activity during Artemia development and suggest its role in termination of cell cycle (G(2)/M phase) arrest and promotion of mitogenesis. Our findings may, thus, provide insights into the regulation of cell division during Artemia post-embryonic development and reveal further aspects of RSK functions.