135 resultados para Extended spectrum
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
It is shown that for a particle with suitable angular moments in the screened Coulomb potential or isotropic harmonic potential, there still exist closed orbits rather than ellipse, characterized by the conserved aphelion and perihelion vectors, i.e. extended Runge-Lenz vector, which implies a higher dynamical symmetry than the geometrical symmetry O-3. The closeness of a planar orbit implies the radial and angular motional frequencies are commensurable.
Resumo:
A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present model is shown. The dilute, self-consistent, differential and Mori-Tanaka methods are also extended to consider randomness in fiber section orientation in a statistical sense. A full comparison is made between various micromechanics methods and with the Hashin and Shtrikman's bounds. The present method provides convergent and reasonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.
Resumo:
To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.
Resumo:
The longitudinal fluctuating velocity of a turbulent boundary layer was measured in a water channel at a moderate Reynolds number. The extended self-similar scaling law of structure function proposed by Benzi was verified. The longitudinal fluctuating velocity, in the turbulent boundary layer was decomposed into many multi-scale eddy structures by wavelet transform. The extended self-similar scaling law of structure function for each scale eddy velocity was investigated. The conclusions are I) The statistical properties of turbulence could be self-similar not only at high Reynolds number, but also at moderate and low Reynolds number, and they could be characterized by the same set of scaling exponents xi (1)(n) = n/3 and xi (2)(n) = n/3 of the fully developed regime. 2) The range of scales where the extended self-similarity valid is much larger than the inertial range and extends far deep into the dissipation range,vith the same set of scaling exponents. 3) The extended selfsimilarity is applicable not only for homogeneous turbulence, but also for shear turbulence such as turbulent boundary layers.
Resumo:
The curvature-stress relation is studied for a film-substrate bilayer with the effect of interfacial slip and compared with that of an ideal interface without interfacial slip. The interfacial slip together with the dimensions, elastic and interfacial properties of the film and substrate layers can cause a significant deviation of curvature-stress relation from that with an ideal interface. The interfacial slip also results in the so-called free edge effect that the stress, constraint force, and curvature vary dramatically around the free edges. The constant curvature as predicted by Stoney's formula and the Timoshenko model of an ideal interface is no longer valid for a bilayer with a nonideal interface. The models with the assumption of an ideal interface can also lead to an erroneous evaluation on the true stress state inside a bilayer with a nonideal interface. The extended Stoney's formula incorporating the effects of both the layer dimensions and interfacial slip is presented.
Resumo:
The statistical-mechanics theory of the passive scalar field convected by turbulence, developed in an earlier paper [Phys. Fluids 28, 1299 (1985)], is extended to the case of a small molecular Prandtl number. The set of governing integral equations is solved by the equation-error method. The resultant scalar-variance spectrum for the inertial range is F(k)~x−5/3/[1+1.21x1.67(1+0.353x2.32)], where x is the wavenumber scaled by Corrsin's dissipation wavenumber. This result reduces to the − (5)/(3) law in the inertial-convective range. It also approximately reduces to the − (17)/(3) law in the inertial-diffusive range, but the proportionality constant differs from Batchelor's by a factor of 3.6.
Resumo:
The variational approach to the closure problem of turbulence theory, proposed in an earlier article [Phys. Fluids 26, 2098 (1983); 27, 2229 (1984)], is extended to evaluate the flatness factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in the perturbation solution of the Liouville equation have to be considered. Most closure methods discard these higher-order terms and fail to explain the intermittency phenomenon. The computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15 and has the same order of magnitude as the experimental data of real turbulent flows. The intermittency phenomenon does not necessarily negate the Kolmogorov k−5/3 inertial range spectrum. The Kolmogorov k−5/3 law and the high degree of intermittency can coexist as two consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory [J. Fluid Mech. 62, 305 (1974)] cannot be disqualified merely because the energy dissipation rate fluctuates.
Resumo:
We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.
Resumo:
The generation of attosecond pulses in a two-level system with permanent dipole moment is investigated. It is shown due to the presence of permanent dipole moments, that the plateau of the high-order harmonic generation spectrum can be extended to X-ray range. Moreover, attosecond pulses with higher intensity can be synthesized by using both even and odd harmonics because of their quantum interference. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.
Resumo:
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
Resumo:
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.
Resumo:
We demonstrate that a pattern spectrum can be decomposed into the union of hit-or-miss transforms with respect to a series of structure-element pairs. Moreover we use a Boolean-logic function to express the pattern spectrum and show that the Boolean-logic representation of a pattern spectrum is composed of hit-or-miss min terms. The optical implementation of a pattern spectrum is based on an incoherent optical correlator with a feedback operation. (C) 1996 Optical Society of America
Resumo:
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.