100 resultados para Experiment Of Microgravity Fluid Mechanics

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgravity fluid physics is an important part of microgravity sciences, which consists of simple fluids of many new systems, gas-liquid two-phase flow and heat transfer, and complex fluid mechanics. In addition to the importance of itself in sciences and applications, microgravity fluid physics closely relates to microgravity combustion, space biotechnology and space materials science, and promotes the developments of interdisciplinary fields. Many space microgravity experiments have been per- formed on board the recoverable satellites and space ships of China and pushed the rapid development of microgravity sciences in China. In the present paper, space experimental studies and the main re- sults of the microgravity fluid science in China in the last 10 years or so are introduced briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free surface deformations of thermocapillary convection in a small liquid bridge of half floating-zone are studied in the present paper. The relative displacement and phase difference of free surface oscillation are experimentally studied, and the features of free surface oscillation for various applied temperature differences are obtained. It is discovered that there is a sort of surface waves having the character of small perturbation, and having a wave mode of unusually large amplitude in one corner region of the liquid bridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition processes from steady flow into oscillatory flow in a liquid bridge of the half floating zone are studied experimentally. Two methods of noncontacted diagnoses are developed to measure the distribution of critical Marangoni numbers described by the onset of the oscillation st the free surface of the liquid bridge.The experimental results obtained for both cases of the upper rod heated and the lower rod heated agree with the prediction by Rayleigh's instability theory.The sensitive relations between the relatively fat or slender liquid bridge and the onset of oscillatory convection are also discussed to reveal the insight of the pressure distribution near the free surface. The experiments have been performed in a small liquid bridge, where the Bond number is much smaller than 1, and the results can be used to simulate the experiment in the microgravity environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using characteristic analysis of the linear and nonlinear parabolic stability equations (PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub-characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic, respectively. The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories, the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time, the methods of removing the remained ellipticity are further obtained from the nonlinear PSE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projecting an orthographical grating mask (20pl/mm) on the surface of a small liquid bridge and receiving the reflected distortion image, one can calculate out reversely the shape of free surface of a liquid bridge. In this way we measured the surface shape of a small floating zone and the two-dimensional deformation of its vibration. The mechanism of thermocapillary oscillatory convection and the three-dimensional variation of the free surface are revealed experimentally. The principle for space experiment has been studied in our laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the coupling between aerodynamic and structural governing equations, a fully implicit multiblock aeroelastic solver was developed for transonic fluid/stricture interaction. The Navier-Stokes fluid equations are solved based on LU-SGS (lower-upper symmetric Gauss-Seidel) Time-marching subiteration scheme and HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) spacing discretization scheme and the same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Transfinite interpolation (TFI) is used for the grid deformation of blocks neighboring the flexible surfaces. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between fluid and structure. The developed code was fort validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. In the subsonic and transonic range, the calculated flutter speeds and frequencies agree well with experimental data, however, in the supersonic range, the present calculation overpredicts the experimental flutter points similar to other computations. Then the flutter character of a complete aircraft configuration is analyzed through the calculation of the change of structural stiffness. Finally, the phenomenon of aileron buzz is simulated for the weakened model of a supersonic transport wing/body model at Mach numbers of 0.98 and l.05. The calculated unsteady flow shows, on the upper surface, the shock wave becomes stronger as the aileron deflects downward, and the flow behaves just contrary on the lower surface of the wing. Corresponding to general theoretical analysis, the flow instability referred to as aileron buzz is induced by a stronger shock alternately moving on the upper and lower surfaces of wing. For the rigid structural model, the flow is stable at all calculated Mach numbers as observed in experiment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The symmetries of a free incompressible fluid span the Galilei group, augmented with independent dilations of space and time. When the fluid is compressible, the symmetry is enlarged to the expanded Schrodinger group, which also involves, in addition, Schrodinger expansions. While incompressible fluid dynamics can be derived as an appropriate non-relativistic limit of a conformally invariant relativistic theory, the recently discussed conformal Galilei group, obtained by contraction from the relativistic conformal group, is not a symmetry. This is explained by the subtleties of the non-relativistic limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new model is developed for predicting the transition from the slug to annular flow of adiabatic two-phase gas/liquid flow in microgravity (mu g) environment. This model is based on the analyses of the effects of the surface tension and the gas inertia in a sense of more physical approach. The drift-flux model is applied to determine the gas void fraction near the transition region. The new model is compared with previous models and experimental data, and the results show the improvement in explanation of the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition process of intermittent flow in a longitudinal section of Bingham fluid from initial distribution to fully developed state was numerically investigated in this paper. The influences of slope dimensionless runoff Q* and viscosity μ0* on the dimensionless surge speed U* were also presented in a wide range of parameters. By one typical example, the intermittent flow possessed wave characteristics and showed a supercritical flow conformation for a fully developed flow. The distributions of gravity and bed drag along the flow path and the velocity distribution of flow field were also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progress of the research activities on space material sciences, microgravity ‰uid physics and combustion, space life sciences and biotechnology research, fundamental Physics in China are brie‰y summarized in the present paper. The major space missions and experimental results obtained on board the Chinese recoverable/non-recoverable satellites and the Chinese manned spaceship named ``Shen-Zhou'' are presented summarily. The recent main activities of the ground-based studies in China are introduced in brief.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a supersonic chemical oxygen-iodine laser (COIL) operating without primary buffer gas, the features of flowfield have significant effects on the Laser efficiency and beam quality. In this paper three-dimensional, multi-species, chemically reactive CFD technology was used to study the flowfield in mixing nozzle implemented with a supersonic interleaving jet configuration. The features of the flowfield as well as its effect on the spatial distribution of small signal gain were analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes the recent development of dynamic fracture in China. The review covers analytical and numerical results on elastodynamic crack fields in 3D and layered media; experimental and theoretical research on dynamic mechanical properties of rocks and advanced materials; transient effects on ideally plastic crack-tip fields when the inertia forces are not negligible.