8 resultados para Expanded austenite
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Successful applications of expanded bed adsorption (EBA) technology have been widely reported in the literature for protein purification. Little has been reported on the recovery of natural products and active components of Chinese herbal preparations using EBA technology. In this study, the hydrodynamic behavior in an expanded bed of cation resin, 001 x 7 Styrene-DVB, was investigated. Ephedrine hydrochloride (EH) was used as a model natural product to test the dynamic binding capacity (DBC) in the expanded bed. EBA of EH directly from a feedstock containing powdered herbs has also been investigated. These particles are different from commercially available expanded bed adsorbents by virtue of their large size (20S to 1030 gm). When the adsorbent bed is expanded to approximately 1.3 to 1.5 times its settled bed height, the axial liquid-phase dispersion coefficient was found to be of the order 10(-5) m(2) s(-1), which falls into the range 1.0 x 10(-6) to 1.0 X 10(-5) m(2) s(-1) observed previously in protein purification. Because of the favorable column efficiency (low axial dispersion coefficient), the recovery yield and purification factor values of EH directly from a feedstock reached 86.5% and 18, respectively. The results suggest that EBA technology holds promise for the recovery of natural products and active components of Chinese herbal preparations.
Resumo:
In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.
Resumo:
Excess intercalation of cationic surfactants into Na-montmorillonites (MMTs) was investigated in organically modified silicates (OMSs), synthesized with MMTs and octadecylammonium chloride (OAC) by systematically varying the surfactant loading level from 0.625 to 1, 1.25, 1.56, 2, and 2.5 with respect to the cation exchange capacity (CEC) of MMTs. Wide-angle X-ray diffraction and thermogravimetric analysis results indicated that the continuous increase of interlayer distances came from the entering of surfactants into the interlayer of MMTs. Excess surfactants were extracted with a Soxhlet apparatus, which showed two kinds of intercalation states of surfactants in the interlayer when the surfactant loading level was beyond the CEC. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to explore the microstructures of OMSs. It was found that the surfactants arranged more orderly as the loading level increased and the excess surfactants piled up in the interlayer together with counterions, forming a sandwiched surfactant layer. On the basis of the results, the layer structures of OMSs and the mechanism by which the surfactants entered the interlayer were expounded: surfactant cations entered the interlayer through cation exchange reactions and were tightly attracted to the silicate platelet surfaces when the surfactant loading level was below the CEC;
Resumo:
R-phycoerythrin (R-PE) was purified from leafy gametophyte of Porphyra haitanensis T. J. Chang et B. F. Zheng (Bangiales, Rhodophyta) by a simple, scaleable procedure. Initially, phycobiliproteins were extracted by repeated freeze-thaw cycles, resulting in release from the algal cells by osmotic shock. Next, R-PE was recovered by applying the crude extract with a high concentration of (NH4)(2)SO4 salt directly to the expanded-bed columns loaded with phenyl-sepharose. An expanded-bed volume twice the settled-bed volume was maintained; then low (NH4)(2)SO4 concentration was used to develop the column. After two rounds of hydrophobic interaction chromatography (HIC), R-PE was purified by anion-exchange column. The method was also successful with free-living conchocelis of P. haitanensis. The purified R-PE was identified with electrophoresis, and absorption and fluorescence emission spectroscopy. The results were in agreement with those previously reported. The yield with a spectroscopic purity (OD565/OD280) higher than 3.2 (the ratio of A(565)/A(620) <= 0.02) was 1.4 mg . g(-1) of leafy gametophyte of P. haitanensis. For the free-living conchocelis of P. haitanensis extract, R-PE could be purified successfully with only one round of HIC. The yield with a spectroscopic purity (OD565/OD280) higher than 3.2 (the ratio of A(565)/A(620) <= 0.02) was 5.0 mg . g(-1) of free-living conchocelis of P. haitanensis. The method described here is a scaleable technology that allows a large quantity of R-PE to be recovered from the unclarified P. haitanensis crude extract. It is also a high protein recovery technology, reducing both processing costs and times, which enhances the value of this endemic Porphyra of China.
Resumo:
R-phycoerythrin was isolated and purified from Gracilaria verrucosa on an expanded-bed adsorption column combined with ion-exchange chromatography, which can effectively solve the problem of blockage of chromatographic columns due to polysaccharides during isolation and purification of phycobiliproteins. 0.1 M (NH4)(2)SO4 proved best to elute R-phycoerythrin from the expanded-bed column, and desalted 0.1 M (NH4)(2)SO4 eluate was used on an ion-exchange column to purify the R-phycoerythrin. Using this two-stage chromatography, the purity (OD565/OD280) of the R-phycoerythrin from G. verrucosa is increased to 4.4, and the yield of purified R-phycoerythrin can reach 0.141 mg . g(-1) of the frozen alga.
Resumo:
R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.
Resumo:
C-phycocyanin was purified on a large scale by a combination of expanded bed adsorption, anion-exchange chromatography and hydroxyapatite chromatography from inferior Spirulina platensis that cannot be used for human consumption. First, phycobiliproteins were extracted by a simple, scaleable method and then were recovered by Phenyl-Sepharose chromatography in an expanded bed column. The purity (the A(620)/A(280) ratio) of C-phycocyanin isolated with STREAMLINE (TM) Column was up to 2.87, and the yield was as high as 31 mg/g of dried S. platensis. After the first step, we used conventional anion-exchange chromatography for the purification steps, with a yield of 7.7 mg/g of dried S. platensis at a purity greater than 3.2 and with an A(620)/A(650) index higher than 5.0. The fractions from anion-exchange chromatography with a level of purity that did not conform to the above standard were subjected to hydroxyapatite chromatography, with a C-PC yield of 4.45 mg/g of dried S. platensis with a purity greater than 3.2. The protein from both purification methods showed one absolute absorption peak at 620 nm and a fluorescence maximum at 650 nm, which is consistent with the typical spectrum of C-phycocyanin. SDS-PAGE gave two bands corresponding to 21 and 18 kDa. In-gel digestion and LC-ESI-MS showed that the protein is C-phycocyanin. (c) 2006 Elsevier B.V. All rights reserved.