9 resultados para European chafer.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this study, the immunoglobulin M heavy chain gene of European eel (Anguilla anguilla) was cloned and analyzed. The full-length cDNA of the IgM heavy chain gene (GenBank accession no. EF062515) has 2089 nucleotides encoding a putative protein of 581 amino acids. The IgM heavy chain was composed of leader peptide (L), variable domain (VH), CH1, CH2. Hinge, CH3, CH4, and C-terminus and two novel continuous putative N-glycosylation sites were found close to the second cysteine of CH3 in A. anguilla-H1 and A. anguilla-H2. The deduced amino acid sequence of the European eel IgM heavy chain constant region shared similarities to that of the Ladyfish (Elops saurus). Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), Grass carp (Ctenopharingodon idella), Common carp (Cyprinus carpio), Channel catfish (Ictalurus punctatus), and the orange-spotted grouper (Epinephelus coioides) with the identity of 46.1%, 39.7%, 38.9%, 32.4%, 32.3%, 31.7%, and 30.7%, respectively. The highest level of IgM gene expression was observed in the kidney, followed by the spleen, gills, liver, muscle and heart in the apparently healthy European eels. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In European bitterling Rhodeus amarus, fish that lay their eggs in the gill chambers of living freshwater mussels, females perform conspicuous behaviours associated with spawning that increases the probability of males performing ejaculatory behaviour and participating in a spawning. A significant positive association was detected between behaviour in which a female performs a spawning action but without releasing eggs, here termed 'deceptive female oviposition', and ejaculatory behaviour by courting males.
Resumo:
The coevolutionary dynamics between European bitterling Rhodeus amarus and freshwater unionid mussels, which the former parasitize by laying eggs on their gills, were tested. In a series of experiments fish preferences and mussel responses were compared in parasites and hosts of recent (Europe) and ancient (Asia) sympatry. Rhodeus amarus readily oviposited on the gills of all mussel species tested. Fish that laid their eggs on the gills of Asian Anodonta woodiana, however, suffered a dramatic reduction in reproductive success compared to fish that oviposited on the gills of European mussels: Unio pictorum, Unio tumidus, Anodonta anatina and Anodonta cygnea. This difference was the result of egg ejection behaviour by mussels rather than the unsuitability of the internal gill environment for European bitterling embryo development. The ejection response of mussels with a long sympatry with European bitterling was considerably more pronounced than that of mussels with a substantially shorter sympatry. The data support a coevolutionary arms race between bitterling and mussels and point to an evolutionary lag in the relationship between R. amarus and its European mussel hosts. (c) 2007 The Authors. Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus, from sympatric populations, were subjected to four cycles of I week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum. The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology (C) 2003 The Fisheries Society of the British Isles.
Resumo:
Although common carp is the major fish species in Asian and European aquaculture and many domestic varieties have occurred, there is a controversy about the origination of European domestic common carp. Some scientists affirmed that the ancestor of European domestic common carp was Danube River wild common carp, but others considered it might be Asian common carp. For elucidating origination of European domestic common carp, we chose two representative European domestic common carp strains (German mirror carp and Russian scattered scaled mirror carp) and one wild common carp strain of Cyprinus carpio carpio subspecies (Volga River wild common carp) and two Asian common carp strains, the Yangtze River wild common carp (Cyprinus carpio haematopterus) and traditionally domestic Xingguo red common carp, as experimental materials. ND5-ND6 and D-loop segments of mitochondrial DNA were amplified by polymerase chain reaction and analyzed through restriction fragment length polymorphism (RFLP) and sequencing respectively. The results revealed that HaeIII and DdeI digestion patterns of ND5-ND6 segment and sequences of control region were different between European subspecies C. carpio carpio and Asian subspecies C. carpio haematopterus. Phylogenetic analysis showed that German mirror carp and Russian scattered scaled mirror carp belonged to two subspecies, C. carpio carpio and C. carpio haematopterus, respectively. Therefore, there were different ancestors for domestic carp in Europe: German mirror carp was domesticated from European subspecies C. carpio carpio and Russian scattered scaled mirror carp originated from Asian subspecies C. carpio haematopterus.