6 resultados para Europe 1992.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
<正> 国际尖端材料技术协会(SAMPE:Society for the Advancement of Material and Process Engineering)于199210月20—22月在加拿大多伦多市召开了两个国际学术会议:第24届国际SAMPE技术会议(24th Int.SAMPE Techn。Coaf。)和第3届国际金属与金属加工会议(3rd Int.SAMPE Metals and Metals Processin Conf.)。两个会议同时举行,全体会议(Plenary Session)在一个会场举行。前者的主题是“先进材料迎接经济的挑战”;后者的主题是“合成与加工的新进展”.尽管此二会议是在西方发达国家经济很不景
Resumo:
While it has been widely suggested that freshwater fishes from East Asia invaded the western Palaearctic, details about this process are largely unknown. Here, using the cytochrome b gene, we evaluated the phylogenetic relationships of a small group of Eurasian primary freshwater fishes (Cobitidae), which are widely distributed and species rich in East Asia and Europe, with the purpose of inferring their invasion process of Europe from East Asia. Though phylogenetic relationships of cobitids were not well resolved, our analysis could identify three sister groups formed by the European and East Asian cobitids, which brought new insights into the biogeography of the genera Cobitis, Misgurnus, and Sabanejewia. The present results support the view that Asian cobitid fishes may have invaded Europe at least five times independently, and once reverse colonization of European cobitids to East Asia could also be found. Ancestral Sabanejewia might have been the first cobitids to cross Siberia and invade the EMZS (Euro-Mediterranean zoogeographic subregion) about 33.54 million years ago (MYA). One lineage of Cobitis and the ancestor of Misgurnus fossilis (Linnaeus) almost in the same time invaded the Europe, responding to 16.71 MYA and 16.59 MYA, respectively. Three different lineages of Cobitis were found to have invaded the EMZS from East Asia, and once reverse invasion to East Asia occurred to one subclade of European Cobitis. And our data also suggest that the diversity of East Asian cobitid fishes, especially of the genus Cobitis, is greatly underestimated.
Resumo:
Interspecific symbiotic relationships involve a complex network of interactions, and understanding their outcome requires quantification of the costs and benefits to both partners. We experimentally investigated the costs and benefits in the relationship between European bitterling fish (Rhodeus sericeus) and freshwater mussels that are used by R. sericeus for oviposition. This relationship has hitherto been thought mutualistic, on the premise that R. sericeus use mussels as foster parents of their embryos while mussels use R. sericeus as hosts for their larvae. We demonstrate that R. sericeus is a parasite of European mussels, because it (i) avoids the cost of infection by mussel larvae and (ii) imposes a direct cost on mussels. Our experiments also indicate a potential coevolutionary arms race between bitterling fishes and their mussel hosts; the outcome of this relationship may differ between Asia, the centre of distribution of bitterling fishes, and Europe where they have recently invaded.
Resumo:
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.