89 resultados para Euler angle
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
将复杂形状区域划分成多块子区域,研究发展了一种多块区域之间迎风守恒型的内边界耦合方法,实现相邻子区域解的光滑过渡,使多区耦合得到总体流场的数值解。对二维翼型跨音速流动和圆板形隆起物超音速流动等进行了分区数值计算,并将计算结果与单区计算结果和实验结果作了比较。并行分区计算引入“先进先出”的同步控制等待机制,实现了高效率并行计算,还分析了影响并行效率的主要因素。
Resumo:
A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time steps n and n + 1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.
Resumo:
The refractive index and thickness of SiO2 thin films naturally grown on Si substrates were determined simultaneously within the wavelength range of 220-1100 nm with variable-angle spectroscopic ellipsometry. Different angles of incidence and wavelength ranges were chosen to enhance the analysis sensitivity for more accurate results. Several optical models describing the practical SiO2-Si system were investigated, and best results were obtained with the optical model, including an interface layer between SiO2 and Si, which proved the existence of the interface layer in this work as described in other publications.
Resumo:
在具有复杂边界的计算区域内,求解偏微分方程组时,经常需要分区和并行计算,分区方法直接关系到数值计算的并行化程度,本文在应用时间算子分裂方法求解Euler方程组的过程中,提出了一种非常容易实现并行化计算的分区技术.
Resumo:
给出了提高二维Euler方程定常解质量的非结构网格自适应方法和模拟结果。计算了无粘激波在固壁上的反射、NAC0012翼型跨声速绕流和马赫数为3的前台阶绕流,自适应效果较好。
Resumo:
应用双分布函数系统,通过Godunov分解,构造了一维Euler方程的格子Boltzmann算法。解决了传统格子气固有的GC问题与能量方程之间的矛盾,实现了分布函数与宏观物理量之间的一一对应。
Resumo:
将CE/SE方法推广到二维固体流体弹塑性问题的数值计算,同时结合杂交粒子水平集方法追踪物质界面和合适的边界条件,提出一套完整的二维Euler型流体弹塑性计算方案.通过长钨杆侵彻装甲钢实验的数值模拟,对方法的精度和有效性进行验证.
Resumo:
全机三维复杂形状绕流数值求解只能采用分区求解的方法,本文采用可压缩Euler方程有限体积方法以及多重网格分区方法对流场进行分区计算。数值方法采用改进的van Leer迎风型矢通量分裂格式和MUSCL方法,基于有限体积方法和迎风型矢通量分裂方法,建立一套处理子区域内分界面的耦合条件。各个子区域之间采用显式耦合条件,区域内部采用隐式格式和局部时间步长等,以加快收敛速度。计算结果飞机表面压力分布等气动力特性与实验值进行了比较,二者基本吻合。计算结果表明采用分析“V”型多重网格方法,能提高计算效率,加快收敛速度达到接近一个量级。根据全机数值计算结果和可视化结果讨论了流场背风区域旋涡的形成过程。
Resumo:
The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.
Resumo:
A quadtree-based adaptive Cartesian grid generator and flow solver were developed. The grid adaptation based on pressure or density gradient was performed and a gridless method based on the least-square fashion was used to treat the wall surface boundary condition, which is generally difficult to be handled for the common Cartesian grid. First, to validate the technique of grid adaptation, the benchmarks over a forward-facing step and double Mach reflection were computed. Second, the flows over the NACA 0012 airfoil and a two-element airfoil were calculated to validate the developed gridless method. The computational results indicate the developed method is reasonable for complex flows.
Resumo:
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.