2 resultados para Estuarine System
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The validation of a fully automated dissolved Ni monitor for in situ estuarine studies is presented, based on adsorptive cathodic stripping voltammetry (AdCSV). Dissolved Ni concentrations were determined following on-line filtration and UV digestion, and addition of an AdCSV ligand (dimethyl glyoxime) and pH buffer (N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid). The technique is capable of up to six fully quantified Ni measurements per hour. The automated in situ methodology was applied successfully during two surveys on the Tamar estuary (south west Britain). The strongly varying sample matrix encountered in the estuarine system did not present analytical interferences, and each sample was quantified using internal standard additions. Up to 37 Ni measurements were performed during each survey, which involved 13 h of continuous sampling and analysis. The high resolution data from the winter and summer tidal cycle studies allowed a thorough interpretation of the biogeochemical processes in the studied estuarine system.
Resumo:
The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.