3 resultados para Espionagem americana
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
外来生物入侵已经在世界范围内造成严重的危害,它不仅导致生物多样性的减少和丧失而且威胁着全球的生态环境和经济发展。入侵种在入侵区域的种群扩散是入侵种带来风险的最根本问题,也是其造成危害的重要原因。研究入侵物种的扩散规律可以了解其在入侵地的入侵状况和扩散趋势,这对制定合理的控制措施具有重要意义。本研究选取14种在我国具有较强威胁性的外来入侵植物,通过对其入侵历史动态的分析,判断其在我国的入侵与扩散阶段,进而预测其在我国的潜在分布区。这14种外来植物为紫茎泽兰(Ageratina adenophora)、土荆芥 (Chenopodium ambrosioides.)、喜旱莲子草(Alternanthera philoxeroides)、反枝苋(Amaranthus retroflexus)、刺苋(Amaranthus spinosus)、皱果苋(Amaranthus viridis)、北美独行菜(Lepidium virginicum)、藿香蓟(Ageratum conyzoides)、钻形紫菀(Aster subulatus)、小蓬草(Conyza canadensis)、一年蓬(Erigeron annuus)、牛膝菊(Galinsoga paviflora)、飞机草(Eupatorium odorata)和北美商陆(Phytolacca americana)。 紫茎泽兰最早于20世纪40年代入侵我国,经过1940—1960年长达20年的时滞期,紫茎泽兰开始在云南及其临近的省份如四川、贵州和广西迅速扩散。其中,紫茎泽兰在南亚热带和中亚热带气候条件下的扩散速度为20公里/年,而在垂直地带性北亚热带地区的扩散速度为6.8公里/年。紫茎泽兰仍没有入侵到垂直地带性暖温带地区。尽管1990年后,紫茎泽兰在云南基本停止扩散,但其在邻近省(市)的快速传播表明紫茎泽兰在我国仍处在扩散阶段,还没有达到饱和阶段。生态位模型预测结果和紫茎泽兰在已经入侵地区扩散的地理生态式样基本相符。我国南部及中南部地区的气候条件十分适合紫茎泽兰生长。而在华中地区,由于环境条件不太适宜,其扩散速度会相对较慢。我国北部和西北部的气候条件完全不适合紫茎泽兰生存。因此,我国南部和中南部广大未入侵地区将会受到紫茎泽兰入侵和快速扩散的严重威胁,对此应该立即采取紧急措施。 自从紫茎泽兰于1978年首次入侵四川省以来,已经在四川、重庆和湖北大面积扩散。紫茎泽兰在此新近入侵区域主要沿河流、公路、铁路扩散。其中沿安宁河、108国道和成昆铁路向北扩散的平均速度为19公里/年,而沿金沙江-长江向东北扩散的平均速度为33公里/年。特别是2000年以后,紫茎泽兰沿金沙江-长江的扩散速度达到了88公里/年。紫茎泽兰得以如此迅速扩散是其本身生物学特性和当地地理生态特点多种因素之间一系列耦合关系共同作用的结果。人类活动和1998年金沙江-长江特大洪水也促进了紫茎泽兰在该地区的扩散。另一方面,紫茎泽兰在新近入侵地区的垂直分布范围说明随海拔高度上升所引起的垂直地带性气候变冷是紫茎泽兰入侵和扩散的自然限制条件。 此外,通过对其余13种外来入侵植物入侵历史过程重建发现,除了牛膝菊、反枝苋和皱果苋最早入侵地位于内陆地区以外,其余10种外来入侵植物的最早入侵地都位于我国的东部、南部沿海和西南边境地区。这13种外来植物通常不是通过单一途径传入,而是通过两种或多种途径传入不同的地点。相应地,入侵后也呈现不同的扩散模式。这13种外来植物在我国大体上包括5种入侵和扩散式样即1)从南部沿海和西南边境分别向内陆扩散,如霍香蓟、飞机草,北美商陆;2)从东部沿海向内陆扩散,例如钻形紫菀,小蓬草、北美独行菜和喜旱莲子草;3)从东部沿海、南部沿海和西南边境分别向内陆扩散,如刺苋;4)从南部沿海向内陆扩散,如土荆芥;5)从最早入侵的内陆地区向周边地区扩散,如反枝苋、牛膝菊和皱果苋。分布区动态分析显示当前这13种外来入侵植物在我国都还处在扩散阶段,而且有些外来植物还处在快速扩散阶段,如飞机草。 在上述研究基础上,我们对这13种外来入侵植物开展了生态位模型适生区预测和比较分析。并且结合其扩散动态和当前分布现状,我们对其潜在的分布区及扩散趋势进行了系统分析和预测。飞机草、土荆芥、霍香蓟、牛膝菊和北美商陆,这5种外来植物的现有分布区明显小于其在我国的适生区,因此它们在我国的潜在分布区很广,应给予足够的重视。喜旱莲子草、反枝苋、皱果苋、北美独行菜、一年蓬、钻行紫菀和北美商陆在我国的入侵范围与其适生区域之间基本重合,但在其入侵范围内仍存在大面积的未入侵区域。这些未入侵地区通常被已入侵区域所包围,因此也应当给予足够的重视。刺苋和小蓬草在我国的潜在的分布区相对较小,这些植物已经基本上完全入侵了其适生区。因此,这些植物在我国向临近区域继续扩散的可能性不大。
Resumo:
We compared partial sequences (402 bp) of the mitochondrial cytochrome b gene in 68 individuals of martens (Martes), weasels (Mustela) and their relatives from the Northern Hemisphere to identify the modes of geographic differentiation in each species. We then compared complete sequences (1140 bp) of the gene in 17 species of the family Mustelidae to know the spatial and temporal modes of speciation, constructing linearized trees with transversional substitutions for deeper lineage divergences and with transversions and transitions for younger lineages. Our data suggested that these lineages of Martes and Mustela differentiated in a stepwise fashion with five radiation stages from the generic divergences (stage I) to the intraspecific divergences (stage V), during the last 10 or 20 million years as the fossil evidence suggests. In the lineage of Martes, the first offshoots are of Martes flavigula, M. pennanti, and Gulo gulo (stage II), the second is M. foina (stage III), and the third are M. americana, M. martes, M. melampus, and M. zibellina (stage IV). The divergence of the lineages of Mustela is likely to have taken place concurrently with the radiations of the Martes. These divergence processes are attributable in part to the geographic allocation along the two continents, North America and Eurasia, as well as among peripheral insular domains, such as Taiwan and the Japanese Islands. In addition, the Eurasian continent itself was shown to have been involved in the species diversification in the martens and weasels.
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.