53 resultados para Eolic energy
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.
Resumo:
On the basis of the well-known shear-lag analysis of fibre/matrix interface stresses and the assumption of identical axial strains in the fibre and matrix, a new model for predicting the energy release rate of interfacial fracture of the fibre pull-out test model is attempted. The expressions for stresses in the fibre, matrix and interface are derived. The formula for interfacial debonding energy release rate is given. Numerical calculations are conducted and the results obtained are compared with those of the existing models.
Resumo:
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.
Resumo:
The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed
Resumo:
The "interaction effect" between aluminum foam and metal column that takes place when foam-filled hat sections (top-hats and double-hats) are axially crushed was investigated in this paper. Based on experimental examination, numerical simulation and analytical models, a systemic approach was developed to partition the energy absorption quantitatively into the foam filler component and the hat section component, and the relative contribution of each component to the overall interaction effect was therefore evaluated. Careful observation of the collapse profile found that the crushed foam filler could be further divided into two main energy-dissipation regions: densified region and extremely densified region. The volume reduction and volumetric strain of each region were empirically estimated. An analytical model pertinent to the collapse profile was thereafter proposed to find the more precise relationship between the volume reduction and volumetric strain of the foam filler. Combined the superfolding element model for hat sections with the current model according to the coupled method, each component energy absorption was subsequently derived, and the influence of some controlling factors was discussed. According to the finite element analysis and the theoretical modeling, when filled with foam, energy absorption was found to be increased both in the hat section and the foam filler, whereas the latter contributes predominantly to the interaction effect. The formation of the extremely densified region in the foam filler accounts for this effect.
Resumo:
Generalized planar fault energy (GPFE) curves have been used to predict partial-dislocation-mediated processes in nanocrystalline materials, but their validity has not been evaluated experimentally. We report experimental observations of a large quantity of both stacking faults and twins in nc Ni deformed at relatively low stresses in a tensile test. The experimental findings indicate that the GPFE curves can reasonably explain the formation of stacking faults, but they alone were not able to adequately predict the propensity of deformation twinning.
Resumo:
It has long been known that various ignition criteria of energetic materials have been limited in applicability to small regions. In order to explore the physical nature of ignition, we calculated how much thermal energy per unit mass of energetic materials was absorbed under different external stimuli. Hence, data of several typical sensitivity tests were analyzed by order of magnitude estimation. Then a new concept on critical thermal energy density was formulated. Meanwhile, the chemical nature of ignition was probed into by chemical kinetics.
Resumo:
In order to assess the safety of high-energy solid propellants, the effects of damage on deflagration-to-detonation transition (DDT) in a nitrate ester plasticized polyether (NEPE) propellant, is investigated. A comparison of DDT in the original and impacted propellants was studied in steel tubes with synchronous optoelectronic triodes and strain gauges. The experimental results indicate that the microstructural damage in the propellant enhances its transition rate from deflagration to detonation and causes its danger increase. It is suggested that the mechanical properties of the propellant should be improved to restrain its damage so that the likelihood of DDT might be reduced.
Resumo:
Using dimensional analysis and finite element calculation, we studied spherical indentation in elastic-plastic solids with work hardening. We report two previously unknown relationships between hardness, reduced modulus, indentation depth, indenter radius, and work of indentation. These relationships, together with the relationship between initial unloading stiffness and reduced modulus, provide an energy-based method for determining contact area, reduced modulus, and hardness of materials from instrumented spherical indentation measurements. This method also provides a means for calibrating the effective radius of imperfectly shaped spherical indenters. Finally, the method is applied to the analysis of instrumented spherical indentation experiments on copper, aluminum, tungsten, and fused silica.
Resumo:
利用热弹性理论分析了在光学材料中由于缺陷吸收激光能量引起的温度和热应力分布,并且针对一个简单的裂纹模型分析了热应力产生的应力强度因子,给出了一些主要参数对于应力强度因子的影响的规律。
Resumo:
In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.
Resumo:
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B-2(0) and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B-2(0) approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
Resumo:
Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.