89 resultados para Enthalpy Of Gelatinisation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature heat capacities of penconazole (C13H15Cl2N3) were precisely measured with an automated adiabatic calorimeter over the temperature rang from 78 to 364 K. The sample was observed to melt at 332.38 +/- 0.06 K. The molar enthalpy and entropy of fusion of the compound were determined to be 33580 +/- 11 J mol(-1), 101.03 +/- 0.02 J mol(-1) K-1, respectively. Further research of the melting process for this compound was carried out by means of differential scanning calorimetry (DSC) technique. The result was in agreement with that obtained from the measurements of heat capacities. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T = 78 K and T = 390 K. The solid-liquid phase transition of the compound has been observed to be T-fus = (376.567 +/- 0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Delta(fus)H(m) = (26.273 +/- 0.013) kJ (.) mol(-1) and Delta(fus)S(m) = (69.770 +/- 0.035) J (.) K-1 (.) mol(-1). The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Delta(c)U(C14H12O, s) = -(7125.56 +/- 4.62) kJ (.) mol(-1) and Delta(c)H(m)degrees(C14H12O, s) = -(7131.76 +/- 4.62) kJ (.) mol(-1), by means of a homemade precision oxygen-bomb combustion calorimeter at T = (298.15 +/- 0.001) K. The standard molar enthalpy of formation of the compound has been derived, Delta(f)H(m)degrees (C14H12O, s) = -(92.36 +/- 0.97) kJ (.) mol(-1), from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature heat capacities of pyrimethanil laurate (C24H37N3O2) were precisely measured with an automated adiabatic calorimeter over the temperature range between T = 78 K and T = 340 K. The sample was observed to melt at (321.52 +/- 0.04) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (67244 +/- 11) J (.) mol(-1), (209.28 +/- 0.02) J (.) mol(-1) (.) K-1, (0.9943 +/- 0.0004) mass fraction, respectively. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (322.264 +/- 0.006) K. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fenoxycarb was synthesized and its heat capacities were precisely measured with an automated adiabatic calorimeter over the temperature range from 79 to 360 K. The sample was observed to melt at (326.31 +/- 0.14) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (26.98 +/- 0.04) kJ-mol(-1), (82.69 +/- 0.09) J-K-1-mol(-1) and 99.53% +/- 0.01%, respectively. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (326.62 +/- 0.06) K. Further research on the melting process of this compound was carried out by means of differential scanning calorimetry technique. The result was in agreement with that obtained from the measurements of heat capacities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy powder as negative electrode material of Ni-MH battery have been investigated at different temperatures. The calculated results show that the apparent activation enthalpy of the charge-transfer reaction is 43.89 kJ mol(-1), and the activation energy of hydrogen diffusion is 21.03 kJ mol(-1). The exchange current density and the diffusion coefficient of hydrogen in the bulky electrode increase with increasing temperature, indicating that increasing temperature is beneficial to charge-transfer reaction and hydrogen diffusion. As a result, the maximum discharge capacity, activation property and high-rate dischargeability are greatly improved with increasing temperature. However, the charge retention and the cycling stability degrade with the increase of the temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nanocomposites of polyamide1010 (PA1010) filled with carbon nanotubes (CNTs) were prepared by melt mixing techniques. The isothermal melt-crystallization kinetics and nonisothermal crystallization behavior of CNTs/PA1010 nanocomposites were investigated by differential scanning calorimetry. The peak temperature, melting point, half-time of crystallization, enthalpy of crystallization, etc. were measured. Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The isothermal crystallization was also described according to Avrami's approach. It has been shown that the addition of CNTs causes a remarkable increase in the overall crystallization rate of PA1010 and affects the mechanism of nucleation and growth of PA1010 crystals. The analysis of kinetic data according to nucleation theories shows that the increment in crystallization rate of CNTs/PA1010 composites results from the decrease in lateral surface free energy.