8 resultados para Energy-efficiency
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An equilibrium equation for the turbulence energy in sediment-laden flows was derived on the basis of solid-liquid two-phase flow theory. The equation was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.
Resumo:
A scheme using a lens array and the technique of spectral dispersion is presented to improve target illumination uniformity in laser produced plasmas. Detailed two-dimensional simulation shows that a quasi-near-field target pattern, of steeper edges and without side lobes, is achieved with a lens array, while interference stripes inside the pattern are smoothed out by the use of the spectral dispersion technique. Moving the target slightly from the exact focal plane of the principal focusing lens can eliminate middle-scale-length intensity fluctuation further. Numerical results indicate that a well-irradiated laser spot with small nonuniformity and great energy efficiency can be obtained in this scheme. (c) 2007 American Institute of Physics.
Resumo:
为了提高高功率激光系统的整体效率和充分利用光能,需要对前端注入的高斯光束进行空间整形,实现驱动器终端激光的均匀化输出。采用振幅型二元面板对激光光束进行空间强度整形,利用误差扩散法进行了理论设计,数值摸拟了整形效果,同时讨论了面板加工误差以及空间滤波器的小孔大小等因素带来的影响。根据理论设计,分别加工了反高斯透射率分布和抛物线透射率分布的二元面板,并进行了整形实验,实现了各自的整形功能,并做了误差分析。实验证明二元面板能对激光光束的空间强度分布实现了精确的整形。
Resumo:
In the Wireless Local Area Networks (WLANs), the terminals are often powered by battery, so the power-saving performance of the wireless network card is a very important issue. For IEEE 802.11 Ad hoc networks, a power-saving scheme is presented in Medium Access Control (MAC) layer to reduce the power consumption by allowing the nodes enter into the sleep mode, but the scheme is based on Time-Drive Scheme (TDS) whose power-saving efficiency becomes lower and lower with the network load increasing. This paper presented a novel energy-saving mechanism, called as Hybrid-Drive Scheme (HDS), which introduces into a Message.-Drive Scheme (MDS) and combines MDS with the conventional TDS. The MDS, could obtain high efficiency when the load is heavy; meanwhile the TDS has high efficiency when the network load is small. The analysis shows that the proposed HDS could obtain high energy-efficiency whether the network load is light or heavy and have higher energy-saving efficiency than conventional scheme in the IEEE 802.11 standard.
Resumo:
The environmentally friendly removal of NO has been investigated using continuous microwave discharge (CMD) at atmospheric pressure. In these experiments, conversions of NO to N-2 as well as NO2 were mainly observed for both dry and wet feed gas, which showed a great difference from those observed with other discharge methods. The effects of a series of reaction parameters, including microwave input power, O-2 concentration, NO concentration, and gas flow rate, on the product distribution and energy efficiency were also studied. Under all reaction conditions, the conversions of NO to N-2 were higher than those to NO2. The highest conversion of NO to N-2 was 88%. The reaction rate of NO removal and the effects of the different discharge modes on NO conversion and product distribution are also discussed. Through comparison of the results of different discharge modes, it was found that the addition of CH4 apparently increased the conversion of NO to N-2 as well as the energy efficiency. A possible reaction process is suggested.
Resumo:
Results of photophysical properties of the complexes of Gd3+, Eu3+ and Tb3+ with conjugated carboxylic acids (3,4-funandicarboxylic acid and nicotinic acid) and 1,10-phenanthroline are reported. Whether between central ions and ligands or between the two ligands, it is found that the intramolecular energy efficiency is a sensitive function of the relative positions of the resonance energy levels of the central ions and the lowest triplet states of the ligands. Couplings of rare earth ions to the ligands are discussed in detail. (C) 1997 Elsevier Science S.A.
Resumo:
Removal of NO by a continuous microwave discharge at atmospheric pressure with the addition of CH4 is reported. The conversion of NO to N-2 is approximately 80%, and the energy efficiency is up to 0.55 g-NO/kWh. The effects of CH4 addition and three discharge modes on NO conversion and energy efficiency are investigated. The dependence of NO conversion on experimental time is also observed.
Resumo:
Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.