139 resultados para Energy Density

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been known that various ignition criteria of energetic materials have been limited in applicability to small regions. In order to explore the physical nature of ignition, we calculated how much thermal energy per unit mass of energetic materials was absorbed under different external stimuli. Hence, data of several typical sensitivity tests were analyzed by order of magnitude estimation. Then a new concept on critical thermal energy density was formulated. Meanwhile, the chemical nature of ignition was probed into by chemical kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiFePO4 attracts a lot of attention as cathode materials for the next generation of lithium ion batteries. However, LiFePO4 has a poor rate capability attributed to low electronic conductivity and low density. There is seldom data reported on lithium ion batteries with LiFePO4 as cathode and graphite as anode. According to our experimental results, the capacity fading on cycling is surprisingly negligible at 1664 cycles for the cell type 042040. It delivers a capacity of 1170 mAh for 18650 cell type at 4.5C discharge rate. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable for electric vehicle application. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n the authors' previous paper, the Strain Energy Density Ratio (SEDR) criterion was proposed. As an example of applications, it was used to predict cracking direction of mixed-mode fracture in a random short fibre laminated composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

boundary-layer flows, the skin friction and wall heat-transfer are higher and the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

thermal conduction, and acoustic wave propagation are included. This

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strain energy density criterion is used to characterize subcritical crack growth in a thin aluminum alloy sheet undergoing general yielding. A finite element analysis which incorporates both material and geometrical nonlinear behaviors of the cracked sheets is developed to predict fracture loads at varying crack growth increments. The predicted results are in excellent agreement with those measured experimentally, thus confirming the validity of the strain energy density criterion for characterizing ductile crack propagation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new formulation derived from thermal characters of inclusions and host films for estimating laser induced damage threshold has been deduced. This formulation is applicable for dielectric films when they are irradiated by laser beam with pulse width longer than tens picoseconds. This formulation can interpret the relationship between pulse-width and damage threshold energy density of laser pulse obtained experimentally. Using this formulation, we can analyze which kind of inclusion is the most harmful inclusion. Combining it with fractal distribution of inclusions, we have obtained an equation which describes relationship between number density of inclusions and damage probability. Using this equation, according to damage probability and corresponding laser energy density, we can evaluate the number density and distribution in size dimension of the most harmful inclusions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the conservation law of energy momentum for Randall-Sundrum models by the general displacement transform. The energy momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is epsilon = epsilon(0)e(-3 vertical bar y vertical bar).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

目前结构损伤识别大多是基于位移模态的试验结果进行的,但由于位移模态结果的局限性,很多情况下识别效果并不明显,本文基于应变模态的工作,利用应变模记识别得到的振型和频率结果,提出了广义应变比能(GSED)的概念。将其应用于结构损伤的识别中,具有识别效果明显,物理意义清晰的优点,GSED方法不仅可以判断损伤的存在与否,而且可以对损伤进行较精确的定位,在测试数据充分的情况下还可以大致判断出损伤的程度,最后通过对简支梁的数值仿真计算验证了方法的有效性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.