5 resultados para Emotional Disorders

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dentin phosphoprotein ( DPP) is the most abundant non-collagenous protein in dentin, which is highly phosphorylated and plays key roles in dentin biomineralisation. The aetiology of isolated hereditary dentin disorders in most affected familie

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that opioid transmission plays an important role in learning and memory. However, little is known about the course of opiate-associated learning and memory deficits after cessation of chronic opiate use in a behavioral animal m

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is the most important factor in the vulnerability to depression and other behavioral disorders, but the mechanisms that stress signals are transferred into depression are far from understanding. To date, the neurotransmitters, neurotrophins and signal pathway have been concerned in the topic focusing on the pathophysiology of depression, but there are still many puzzles. Increasing evidence has indicated that the alteration in neuronal plasticity is the “trace” of stress-induced damages. The extracellular signal-regulated protein kinase(ERK)-cyclic-AMP-responsive element(CRE)-binding protein(CREB)signal pathway is a powerful intracellular signal transduction pathway participating in neuronal plasticity which is involved in higher brain cognitive functions such as learning and memory. However, so far, little is known about the role of the ERK-CREB signal pathway in response to stress and emotional modulations. Thus the aim of the study was to systematically investigate the role of the ERK-CEB signal pathway in depressive-like behaviors induced by stress. Depression animal models, antidepressant agent treatment and disruption of signal pathway in specific brain regions were applied. In the present study, three experiment sessions were designed to make sure whether the ERK-CREB signal pathway was indeed one of pathophysiological mechanisms of depressive-like behaviors induced by stress. In experiment one, two different stress animal models were applied, chronic forced swim stress and chronic empty water bottle stress. After stress, all animals were tested behaviorally using open-field, elevated-plus maze and saccharine preference test, and brain samples were processed for determination of ERK, P-ERK, CREB and P-CREB using western blot. The relationships between the proteins of ERK, P-ERK, CREB and P-CREB in the brain and the behavioral variables were also analyzed. In experiment two, rats were treated with antidepressant agent fluoxetine once a day for 21 consecutive days, then the brain levels of ERK, P-ERK, CREB and P-CREB was determined, the depressive-like behaviors were also examined. In experiment three, mitogen activated extracellular-signal-regulated kinase kinase (MEK) inhibitor U0126 was administrated to inhabit the activation of ERK in the hippocampus and prefrontal cortex respectively, then behavioral measurements and protein detection were conducted. The main results of the study were as the following: (1) Chronic forced swim stress induced animals to suffer depression and disrupted the ERK-CREB signal pathway in hippocampus and prefrontal cortex. There were significant correlations between P-ERK2, P-CREB and multiple variables of depressive-like behaviors. (2) Chronic empty water bottle stress did not induce depressive-like behaviors. Such stress decreased the brain level of P-ERK2 in hippocampus and prefrontal cortex, but the level of P-CREB in the hippocampus was increased. (3) The antidepressant agent fluoxetine relieved depressive-like behaviors and increased the activities of the ERK-CREB signal pathway in stressed animals. (4) Animals treated with U0126 injection into hippocampus showed decreased activities of the ERK-CREB signal pathway in the hippocampus, and suffered depression comorbid with anxiety. (5) Animals treated with U0126 injection into prefrontal cortex showed decreased activities of the ERK-CREB signal pathway in the prefrontal cortex, and exhibited depressive-like behaviors. In conclusion, The ERK-CREB signal pathway in the hippocampus and prefrontal cortex was involved in stress responses and significantly correlated with depressive-like behaviors; The ERK-CREB signal pathway in the hippocampus and prefrontal cortex participated in the mechanism that fluoxetine reversed stress-induced behavioral disorders, and might be the target pathway of the therapeutic action of antidepressants; The disruption of the ERK-CREB signal pathway in the hippocampus or prefrontal cortex led to depressive-like behaviors in animals, suggesting that disruption of ERK-CREB pathway in the hippocampus or prefrontal cortex was involved in the pathophysiology of depression, and might be at least one of the mechanisms of depression induced by stress.