18 resultados para Elevation. Environmental heterogeneity
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
植物克隆生长型主要由遗传结构决定,不同的克隆植物具有不同的克隆生长型,同时植物的克隆生长型又依具体生境和个体发育阶段不同而变化。Harper认为植物构件的结构由分枝角度、节间长度和芽的成活率决定。大量的研究表明克隆植物生长型主要由3个形态参数决定:节间长度、分枝角度和分枝强度。 植物的生境条件无论在时间还是空间上都是异质性的,即使在很小的尺度上这种异质性也是存在的。在这种具有异质性的生境条件下几乎所有植物都有表型可塑性。植物的表型可塑性是指植物在不同的环境因子条件下,在形态、生物量、生理等方面产生的一系列不同。表现型可塑性是植物种群克服环境异质性的重要途径,也是克隆植物实现觅养行为的途径。克隆植物的觅养行为是通过根茎或匍匐茎的长度和分枝强度的变化以及生物量的分配来实现其迁移和对生境的选择,从而将分株安置在各种微环境中。 克隆植物构型的可塑性可使它在土壤水分斑块性分布的环境中通过克隆生长,调整对不同斑块的土壤水分获取对策。在一田间实验中,匍匐茎草本蛇莓(Duchesnea indica Focke)经历了不同土壤水分水平(土壤最大含水量的40%、60%、80%、100%等)处理,以研究土壤水分对蛇莓克隆构型的影响。结果表明:间隔子长度、分株密度、分枝角度和分枝强度呈二次曲线变化,土壤含水为最大含水量的80%为最适生境。 克隆植物构型的可塑性可使它在养分斑块性分布的环境中通过克隆生长调整相应于对不同斑块的养分获取对策。在一田间实验中,蛇莓经历了不同土壤养分水平(高、中、低和对照)处理,以研究土壤养分对蛇莓克隆构型的影响。结果表明:随着土壤养分水平的增加,间隔子的长度、分枝角度均逐渐降低,分枝强度和分株密度增加。 克隆植物构型的可塑性可使它在不同光强的环境中通过克隆生长,调整其对不同光强的资源获取对策。在控制性光资源异质性生境(模拟浓密林荫、稀疏林荫、农田间套作、裸地等)下,研究和模拟了光资源的时空异质性和蛇莓的克隆可塑性变化。结果表明:随着光照强度的增加,间隔子长度的长度逐渐降低,分枝角度、分株强度呈二次曲线变化。 克隆植物构型的可塑性可使它在不同海拔的环境中通过克隆生长,调整其对不同海拔的资源获取对策。在一海拔高度实验中,匍匐茎草本蛇莓经历了不同海拔(400 m、800 m、1200 m和1600 m)处理,以研究不同海拔对蛇莓克隆构型的影响。结果表明:随着海拔的增加,间隔子长度、分株密度、分枝角度和分枝强度呈二次曲线变化。 从克隆植物生长环境(小气候)定量分析了克隆植物生长必需资源如水分、养分、光强、海拔等的变化特性。具体描述和分析了异质环境尺度的大小和等级数。在前人研究成果的基础上,验证了克隆植物生长必需资源分布异质性的数学模型并建立相应的运算模块。在不同水分、养分、光强和海拔等异质性生境中,蛇莓克隆构型相关特征的可塑性变化可用动态Logistic模型进行模拟和预测,拟合效果较好。结合植物对环境异质性的利用对策,对所揭示的蛇莓克隆构型可塑性进行了讨论。 用分形技术描述了蛇莓在资源斑块性分布的生境中,通过克隆生长调整相应于对不同斑块的资源获取对策。植物克隆构型的形态特征在一定尺度范围内具有自相似特征。蛇莓克隆构型的分形维数直接反映了在异质性生境中蛇莓克隆生长的差异。蛇莓克隆生长越发达分形维数越高。相对小的分形维数,反映出蛇莓克隆生长相对较弱。基于计算机图像技术和分形理论,建立了植物克隆生长分形度量的计算机模型,实现了对植物克隆生长过程的计算机模拟。模拟的蛇莓克隆生长形态与实际生长不仅具有相近的分形维数,而且形态也非常相似。利用克隆生长模型的预测能力克服实验生态学难以逾越的某些研究盲点,其研究成果将对克隆植物利用资源异质性的生态对策研究具有重要的指导意义。
Resumo:
时空异质性是生境的基本特征。几乎所有植物都是在一定尺度的时空异质性环境中完成其生活史的。在进化过程中,植物可能形成了各种有效利用环境异质性的生态适应对策。克隆生长使得克隆植物在理论上更容易适应于异质性环境。本文以匍匐茎和根状茎型草本为材料,应用实验生态学方法研究了游击型克隆植物对异质性环境的生态适应对策。 在沙丘生境(如毛乌素沙地)中,沙埋是植物常常遭遇的事件。由于沙埋在水平空间表现出非均匀性,克隆植物的基株或克隆片断常常经历局部沙埋。通过温室和野外实验,研究了克隆整合作用对鹅绒委陵菜和沙鞭沙埋分株忍受沙埋能力的影响。结果表明,克隆整合显著提高鹅绒委陵菜和沙鞭沙埋分株的存活。进一步的耗-益分析表明,克隆整合使鹅绒委陵菜沙埋分株显著受益,而对非沙埋分株却没有显著耗损,故整个克隆片断的生长得到显著提高。因此,克隆整合是沙丘生境中克隆植物对局部沙埋胁迫的生态适应对策之一。 通过2个温室实验,研究了金戴戴对光照、基质养分和盐分的克隆可塑性。结果表明:光照强度、基质养分和盐分对金戴戴克隆生长和克隆形态均有十分显著的影响。深度遮光、低养和高盐均显著削弱金戴戴的生长,其生物量、叶面积、分株数、匍匐茎长及叶柄长和根冠比对基质盐分的可塑性大小和格局显示出基株间的差异。在低养分条件下,金戴戴匍匐茎节间显著伸长,而分枝强度显著减弱。这些结果与克隆植物觅食模型相符合,表明当生长于异质性环境,金戴戴可凭借克隆可塑性实现的觅养行为来增加对养分资源的摄取。因此,克隆可塑性是克隆植物利用环境异质性的另一条途径。 在另一温室实验中,研究了三种匍匐茎克隆草本鹅绒委陵菜、金戴戴和绢毛匍匐委陵菜对光照和养分资源交互斑块性环境的反应。当置于高光低养下的分株与低光高养下的分株相连时,高光低养分株、低光高养分株以及克隆片断的生物量均得到显著提高。同时,低光高养下分株的根冠比相对增加,而高光低养下分株的根冠比相对下降。这表明,三种克隆植物发生了环境诱导的克隆内分工行为。这种环境诱导的克隆内分工行为有利于整个基株对资源交互斑块性环境的利用,是克隆植物对异质性环境的生态适应对策。
Resumo:
黄土高原是一个独特的地理区域,由于对其原生植被的不同认识,自然区划历来富有争议。为因地制宜地进行植被建设,在辨析植被属性有关论点(黄土无林、草原次生等)的基础上,主要由现代植被证据进一步讨论黄土高原的自然地带。分析了生物气候条件在不同地域之间的分异性,阐述了植被地带特征。为充分说明植被地带性,还从历史的角度探讨了植被建设的效果。表明黄土高原环境的非均质性可表征为森林、草原等地带,不能认为黄土高原不具有森林发育的地带性环境。相对于森林地带北界森林线,森林草原地带北界应为树木线。植被建设不应局限于一种土地利用模式,不能无视疏林及稀疏灌丛在森林草原地带的客观存在。
Resumo:
克隆植物被认为比非克隆植物更宜于利用异质性环境。在复杂的空间异质环境中,克隆植物可能形成了各种有效利用环境异质性的适应对策。对于克隆植物适应机制的研究,前人已做了大量的工作,特别是从形态和生物量分配等方面对简单异质生境下克隆植物的克隆整合和克隆分工进行了详细的研究。本研究以分布广泛的克隆植物东方草莓(Fragaria orientalis)作为研究对象,应用野外调查和实验生态学方法,采用多对比度单资源模型和不同向双资源模型,从形态和生理生态的角度,研究复杂异质生境下克隆植物的整合和分工及其耗益问题,分析不同类型的生境对克隆植物整合和分工的修饰作用,进而探讨克隆植物对异质生境的适应策略。克隆构型和分株种群特征是植物克隆生长及其生态适应对策研究的基本内容。本文通过野外调查,研究在不同光照条件下东方草莓克隆构型、分株种群特征以及点分布格局。结果表明:东方草莓的克隆构型随光照发生相应的变化,低光照下其匍匐茎节间长和分枝角度均增大而分枝强度减小;随光照减弱,东方草莓分株种群的生物量、根冠比和分株种群密度显著降低;不同光照下东方草莓分株均以随机分布为主但不同尺度下有所差异,其分布格局强度依次为旷地<林缘<林下。结合克隆植物对资源的利用对策,探讨了克隆构型和分株种群特征以及分布格局随环境条件变化的生态适应意义。不同生境斑块条件下克隆植物可能采取不同的适应对策。采用盆栽实验,研究不同水分对比度下克隆整合及其生理生态特征,并对单向和交互资源中东方草莓的克隆整合做了对比研究。结果显示:高的水分对比度能够促进东方草莓的克隆整合,并能刺激相连分株增加光合作用,东方草莓体内的氧化—抗氧化系统也II随对比度做出相应的反应。耗-益分析表明胁迫分株的受益是以供给分株的损耗为代价的,但从克隆片段总体来说是受益的。单向资源中东方草莓生长的绝对值高于交互资源,但耗-益分析表明生长于交互资源下东方草莓的克隆整合获益大于生长于单向资源下东方草莓的克隆整合获益。长期生长于特定生境的克隆植物,在进化过程中其克隆整合和克隆分工在对资源异质性的适应策略方面可能有所侧重。采用盆栽实验对来自不同海拔梯度的东方草莓的克隆整合和克隆分工对异质资源的适应对策进行了研究。实验结果表明,来自高海拔的东方草莓可塑性较差。来自两个海拔的东方草莓对切断匍匐茎的表现有所差异,总体上切断匍匐茎对来自高海拔的东方草莓影响更大些。另外,来自高海拔的东方草莓表现出更高的克隆分工。IIIClonal plants are known to be more suitable for the habitats of heterogeneousresources than nonclonal plants, perhaps due to their well developed adaptivestrategies to environmental heterogeneity. Many studies have been done on theadaptive mechanisms of clonal plants, especially on the clonal integration anddivision of labor with morphology and biomass allocation under simpleheterogeneous habitats. Based on field surveys, laboratory experiments, multi-contrastunidirectional resource model and reciprocal resource model, Fragaria orientalis, aRosaceae stoloniferous herb that widely distributes in China, was used to study thisplant’s morphological and physiological responses to complicated heterogeneoushabitats in terms of its clonal integration, division of labor and cost-benefit, as well astheir modifications by different habitats, so as to better understand the adaptivestrategies of clonal plants under heterogeneous environments.Clonal architecture and ramet population characteristics are of the major concernin the studies on growth and adaptive strategies of clonal plants. Clonal architecture,ramet population characteristics and spatial point pattern of F. orientalis underdifferent light intensity were studied with field observations. The results showed that,clonal architecture changed with light availability: Internode-lengths and branchangels of stolons were larger while branch intensities were smaller under lower lightintensity than those under higher light intensity; Biomass of ramet population,root-shoot ratio and density of ramet population decreased significantly with reduce oflight intensity; Under all light intensities, spatial pattern of ramets was mainlyrandomly distributed but it changed with different scales, with pattern intensity as:open space < forest edge < understory. Adaptation significance of the clonal architecture, the ramet population characteristics and the spatial pattern changing withdifferent environments was discussed according to these results.Clonal plants may take different adaptive strategies under different patches. Withpot culture, clonal integration and physiological parameters of F. orientalis underdifferent water contrasts were studied, and clonal integration under unilateralresources and reciprocal resources were also compared. The results suggested that,high water contrast improve the clonal integration of F. orientalis and increase thephotosynthesis of connected ramets. Oxidative and antioxidative system of F.orientalis also responded with changing water contrasts. According to cost-benefitanalysis, the drought-stressed ramets obtained benefits from the connectedwell-watered ramets, and as a whole, the clonal fragment could also get benefits.Growth of F. orientalis in homogeneous resources was better than that inheterogeneous resources, but the whole plant got more benefit through clonalintegration in heterogeneous resources than in homogeneous resources.Pot culture experiments were also used to study the adaptive strategies inutilizing heterogeneous resources by the plant populations from different altitudes.The results showed that, F. orientalis from alpine zones were shorter and lessexpanded with poorer clonal plasticity than those from middle mountains. F.orientalis from two different altitudes showed different responses to stolon severing,and as a whole, stolon severing had more influence on F. orientalis from alpine zones.In addition, F. orientalis from alpine zones exhibited higher division of labor, whichsuggested that clonal plants from different habitats develop their own adaptivemechanisms in their clonal integration and division of labor in response toenvironmental heterogeneity.
Resumo:
1. Plateau zokors, Myospalax fontanierii, are the only subterranean herbivores on the Tibetan plateau of China. Although the population biology of plateau zokors has been studied for many years, the interactions between zokors and plants, especially for the maintenance and structure of ecological communities, have been poorly recognized. In the past, plateau zokors have been traditionally viewed as pests, competitors with cattle, and agents of soil erosion, thus eradication programmes have been carried out by local governments and farmers. Zokors are also widely and heavily exploited for their use in traditional Chinese medicine.2. Like other fossorial animals, such as pocket gophers Geomys spp. and prairie dogs Cynomys spp. in similar ecosystems, zokors may act to increase local environmental heterogeneity at the landscape level, aid in the formation, aeration and mixing of soil, and enhance infiltration of water into the soil thus curtailing erosion. The changes that zokors cause in the physical environment, vegetation and soil clearly affect the herbivore food web. Equally, plateau zokors also provide a significant food source for many avian and mammalian predators on the plateau. Zokor control leading to depletion of prey and secondary poisoning may therefore present problems for populations of numerous other animals.3. We highlight the important role plateau zokors play in the Tibetan plateau ecosystem. Plateau zokors should be managed in concert with other comprehensive rangeland treatments to ensure the ecological equilibrium and preservation of native biodiversity, as well as the long-term sustainable use of pastureland by domestic livestock.
Resumo:
The benthic community structure in Baoan Lake was examined in relation to lake water physicochemical characteristics and biological parameters. Seventy macroinvertebrate taxa were identified, and mollusks constituted the dominant group and accounted for more than 80% of the total abundance. Assemblages were composed mainly of scrapers (81.5%) and collector-gatherers (roughly 10%). Three plant variables (richness, total cover, and total biomass) were strongly correlated with the faunal gradient (p<0.05). Other predicator variables were Cl-, SiO2, and chemical oxygen demand. Because of the importance of macrophytes in structuring benthic assemblage in this lentic system, the spatial heterogeneity of macrophytes also influenced the pattern of macroinvertebrates. Seven lake regions were uniquely characterized according to primary macrophyte composition and biomass. There were significant differences for macroinvertebrate taxa richness, abundance, and biodiversity among the seven macrophyte regions.
Resumo:
Genetic diversity of the plankton community in Lake Xiliang was depicted by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Seventy-seven bands (33 of 16S rDNA and 44 of 18S rDNA) were detected, sixty-two planktonic taxa were identified in six sample stations in November 2007. The most common taxa were Ceratium hirundinella, Bdelloidea, Keratella cochlearis, Polyarthra trigla, and copepod nauplii. Based on environmental factors, taxonomic composition, and PCR-DGGE fingerprinting, unweighted pair-group method using arithmetic averages clustering and principal components analysis were used to analyze habitat similarities. There was distinct spatial heterogeneity in Lake Xiliang, and the genetic diversity of the plankton community was closely related to taxonomic composition and environmental factors.
Resumo:
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4-N and As were found to be significantly related (P < 0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.
Resumo:
Surveys of macroinvertebrates were carried out in the Xiangxi River system during July of 2001. Among the 121 taxa collected, Ephemeroptera, Trichoptera, and Diptera dominated (41.7, 26.0, and 24.5% of the total relative abundance, respectively). Two-way indictor species analysis and detrended correspondence analysis divided the 49 sites into four groups based on species composition and relative abundance. Canonical correspondence analysis indicated that elevation, SiO2, pH, conductivity, hardness, and NO2-N were significant environmental factors affecting the distribution of macroinvertebrates.
Resumo:
The spatial pattern of epilithic algae in the Xiangxi River system was studied in relation to several environmental factors by two-way indictor species analysis (TWINSPAN), detrended correspondence analysis (DCA), and canonical correspondence analysis (CCA). Eighty-nine taxa including diatoms, green algae, and blue-green algae were observed. Diatoms were dominant, and Cocconeis placentula, Cymbella minuta, Diatoma vulgare, and Gomphonema angustatum appeared in most of sampling sites. By TWINSPAN and DCA, thirty-one sites were divided into three groups based on composition and relative richness of benthic algae. CCA indicated that SiO2, pH, total phosphorus, Ca2+, velocity, elevation, and Cl- were significant environmental factors affecting the distribution of algae communities. In this minimal subset, SiO2 and pH were the most influential variables.
Resumo:
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.
Resumo:
[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.
Resumo:
It is of utmost importance to understand the spallation behaviour of heterogeneous materials. In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high stress, causes lower damage.
Resumo:
By recalling mankind's path during past 50 years in the present article, we mainly highlight the significance of environmental issues today. In particular, two major factors leading to environment deterioration in China such as water resources and coal burning are stressed on. Present-day environmental issues are obviously interdisciplinary, of multiple scales and multi-composition in nature. Therefore, a process-based approach for environment research is absolutely necessarily. A series of sub-processes, either physical, chemical or biological, are subsequently analyzed in order to established reasonable parameterization scheme and credible comprehensive model. And we are now in a position to answer questions still open to us, improve existing somewhat empirical engineering approaches and enhance quantitative accuracy in prediction. To illustrate this process-based research approach, three typical examples associated with the Yangtze River Estuary, Loess Plateau and Tenggeli Desert environments have been dealt with respectively. A theoretical model of vertical flow field accounting for runoff and tide interaction has been established to delineate salinity and sediment motion which are responsible for the formation of mouth bar at the outlet and the ecological evolution there. A kinematic wave theory combined with the revised Green-Ampt infiltration formula is applied to the prediction of runoff generation and erosion in three types of erosion region on the Loess Plateau. Three approaches describing water motion in SPAC system in arid areas at different levels have been improved by introducing vegetation sub-models. However, we have found that the formation of a dry sandy layer and biological crust skin are additional primary causes leading to deterioration of water supply and succession of ecological system.
Resumo:
By sample specificity it is meant that specimens with the same nominal material parameters and tested under the same environmental conditions may exhibit different behavior with diversified strength. Such an effect has been widely observed in the testing of material failure and is usually attributed to the heterogeneity of material at the mesoscopic level. The degree with which mesoscopic heterogeneity affects macroscopic failure is still not clear. Recently, the problem has been examined by making use of statistical ensemble evolution of dynamical system and the mesoscopic stress re-distribution model (SRD). Sample specificity was observed for non-global mean stress field models, such as the duster mean field model, stress concentration at tip of microdamage, etc. Certain heterogeneity of microdamage could be sensitive to particular SRD leading to domino type of coalescence. Such an effect could start from the microdamage heterogeneity and then be magnified to other scale levels. This trans-scale sensitivity is the origin of sample specificity. The sample specificity leads to a failure probability Phi (N) with a transitional region 0 <