143 resultados para Electromagnetic waves
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.
Resumo:
Neutron production from a thin deuterium-tritium (D-T) foil irradiated by two intense femtosecond laser pulses from opposite sides with zero phase difference is studied analytically and numerically. For the interaction of a laser pulse of amplitude a = 7, focal area 100 mu m(2) and areal density 4.4 x 10(18) cm(-2) with a D-T plasma foil, about 1.17 x 10(21) neutron s(-1) can be obtained, much more than from other methods. The profiles of the ion and electron densities are also calculated.
Resumo:
We propose the exploding-reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground-penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane-wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
The spherically converging detonation wave was numerically investigated by solving the one-dimensional multi-component Euler equations in spherical coordinates with a dispersion-controlled dissipative scheme. Finite rate and detailed chemical reaction models were used and numerical solutions were obtained for both a spherical by converging detonation in a stoichiometric hydrogen-oxygen mixture and a spherically focusing shock in air. The results showed that the post-shock pressure approximately arises to the same amplitude in vicinity of the focal point for the two cases, but the post-shock temperature level mainly depends on chemical reactions and molecular dissociations of a gas mixture. While the chemical reaction heat plays an important role in the early stage of detonation wave propagation, gas dissociations dramatically affect the post-shock flow states near the focal point. The maximum pressure and temperature, non-dimensionalized by their initial value, are approximately scaled to the propagation radius over the initial detonation diameter. The post-shock pressure is proportional to the initial pressure of the detonable mixture, and the post-shock temperature is also increased with the initial pressure, but in a much lower rate than that of the post-shock pressure.
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
A simple and feasible model feet the calculation of the gas transfer by bubble clouds is proposed in this article. N-2, O-2, and CO2 transferred by bubble clouds are obtained. At wind speed of 10 m/s, the calculated supersaturation of dissolved oxygen is 1.93-3.89% in agreement with the measurement.
Resumo:
An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.
Resumo:
We propose a lattice Boltzmann model for the wave equation. Using a lattice Boltzmann equation and the Chapman-Enskog expansion, we get 1D and 2D wave equations with truncation error of order two. The numerical tests show the method can be used to simulate the wave motions.
Resumo:
In this paper, the calculated results about the propagation properties of electromagnetic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.
Resumo:
Two mechanisms for the wave-induced pore pressures in a porous seabed, i.e. oscillatory and residual excess pore pressures, have been observed in laboratory experiments and field measurements. Most previous investigations have focused on one of the mechanisms individually. In this paper, an analytical solution for the wave-induced residual pore pressure, which is not available yet, is derived, and compared with the existing experimental data. With the new solution, a parametric analysis is performed to clarify the applicable ranges of two mechanisms. Then, a simplified approximation for the prediction of wave-induced liquefaction potential is proposed for engineering practice.
Resumo:
Roll waves are frequently observed in overland flow, especially in rill flow, which has an important effect on the development of soil erosion. Using one-dimensional St. Venant equations, this paper investigates the dynamics of periodic roll waves based on Dressler’s and Brock’s work. Under the assumption that the average flow depth equals the uniform flow depth, expressions of the roll-wave speed and roll-wave profile were obtained. Testing with the results observed by Brock (1970) for wave properties shows that these expressions can approximately describe the characteristics of periodic permanent roll waves. Numerical solutions of roll waves under specific conditions are found, which show that when a roll wave appears, the shear stress of flow increases, and the soil erosion accelerates.