187 resultados para Electric-Dipole Moment
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.
Resumo:
The generation of attosecond pulses in a two-level system with permanent dipole moment is investigated. It is shown due to the presence of permanent dipole moments, that the plateau of the high-order harmonic generation spectrum can be extended to X-ray range. Moreover, attosecond pulses with higher intensity can be synthesized by using both even and odd harmonics because of their quantum interference. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High-spin states of 165Er were studied using the 160Gd(9Be, 4n)reaction at beam energies of 42 and 45 MeV. The previously known bands based on the ν5/2-[523] and ν5/2+[642] configurations have been extended to high-spin states. Electric-dipole transitions linking these two opposite parity bands were observed. Relatively large B(E1) values have been extracted experimentally and were attributed to octupole softness.
Resumo:
The research of dipole source localization has great significance in both clinical research and applications. For example, the EEG recording from the scalp is widely used for the localization of sources of electrical activity in the brain. This paper presents a closed formula that describes the electric field of dipoles at arbitrary position, which is a linear transformer called the transfer matrix. The expression of transfer matrix and its many useful characteristics are given, which can be used for the analysis of the electrical fields of dipoles. This paper also presents the closed formula for determining the location and magnitude of single dipole or multi-dipoles according to its electrical field distribution. A calculation result for a single dipole shows that the dipole will be located at the midpoint of a line segment if there are equivalent fields at its two ends.
Resumo:
Spectra for Delta n = 0 transitions of the type 2s(2)2p(k)-2s2p(k+1) or 2s2p(k)-2p(k+1) from highly ionized sulfur produced in beam-foil excitation are investigated and compared to similar spectra measured with other types of light sources. In the experiment, fifty lines have been identified, of which eleven lines are new and accurately measured. Analysis of spectra was based on comparisons with other experimental results and calculated values.
Resumo:
The effects of the transition dipole moment function (TDMF) on the dynamics Of O-3 photodissociation in the Hartley band have been exploited by means of exact 3D time-dependent wavepacket method using the SW potential energy surface [J. Chem. Phys. 78 (1983) 7191]. The calculations show that the explicit inclusion of the TDMF results in slight uniform reductions for the intensities of recurrence peaks of the autocorrelation function and a slight broadening of the absorption spectrum, in comparison with the result where the TDMF is assumed to be constant. The pattern of recurrence structures of the autocorrelation function is essentially unaffected. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the relationship between the molecular configuration and dipole moment of some fluorinated liquid crystals (LCs). The aeornetries of the molecules were preliminarily optimized at empirical AM1 and then were further optimized at B3LYP/6-31G(d) level. The dipole moment has been calculated. It is strongly influenced by the position and number of fluorine substituents in the benzene ring of the molecule. The polarizability, mean polarizabilities, and anisotropic polarizability of the phenylbicyclohexane (PBC) fluorine substituents are also given and discussed. (c) 2004 Wiley Periodicals, Inc.
Resumo:
The fully relaxed single-bond torsional potentials and orientation-related rotational potentials of 2,2'-bithiophene (BT) under the interaction of an external electric field (EF) constructed by point charges have been evaluated with semi-empirical AMI and PM3 calculations. The torsional potentials are sensitive to both EF strength and direction. While the EF is parallel to the molecular long axis, the torsional barrier around C-x-C-x' bond obviously rises with increasing the EF strength, whereas the relative energies of syn and anti minima show a slight change. The interaction between the EF and the induced dipole moment has been proposed to elucidate this observation. On the other hand, the relative energy difference between the syn and anti minima shows an obvious change, while the EF is perpendicular to the molecular long axis. This feature has been ascribed to the interaction between the EF and the permanent dipole moment of BT. Furthermore, conformational and orientational analyses in two dimensions have been carried out by changing the torsional and rotational angles in the different EF. The conformation and orientation of a gas-phase BT in the EF are governed by both the above factors.
Resumo:
Conformational analysis of 2,2'-bithiophene (BT) under the influence of an electric field (EF) constructed by point charges has been performed by using semi-empirical Austin Model 1 (AM1) and Parametric model number 3 (PM3) calculations. When the EF perpendicular to the molecular conjugation chain is applied, both AM1 and PM3 calculations show an energy increase of the anti-conformation. AM1 predicts that the global minimum shifts to syn-conformation when the EF strength is larger than a critical value. and PM predicts that the local minimum in anti-conformation vanishes. This kind of EF effect has been ascribed to the EF and dipole moment interaction.
Resumo:
A liquid crystalline (LC) copolyether has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,11-dibromoundecane with a 50/50 (both in %) equal composition of the 7- and 11-methylene monomers [coTPP-7/11(5/5)]. A mono-domain with a homeotropic alignment can be induced by a thin film surface in the LC phase. When an electrostatic field is applied to the surface-induced mono-domains parallel to the thin film surface normal, the molecular alignment undergoes a change from the homeotropic to uniaxial homogeneous arrangement. However, when the field is applied to a direction perpendicular to the thin film surface normal. the molecular alignment is about 10 degrees -tilt with respect to the homeotropic alignment toward the a*-axis. This is because the permanent dipole moment of the copolyether is not right vertical to the molecular direction. The calculation of molecular dipoles indicates that the permanent dipole moment of this copolyether is about 70 degrees away from the molecular axis, which leads to a negative dielectric anisotropy. It is speculated that the 10 degrees- rather than 20 degrees -tilt is due to a balance between the alignment induced by the electrostatic field and the surface. In the electrostatic field, molecules are subjected to a torque tau, which is determined by the permanent dipole moment P and the electrostatic field E: tau = P x E. The molecular realignment in both parallel and perpendicular directions to the thin film surface normal is determined by satisfying the condition of tau = P x E = 0. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.
Resumo:
Er2O3-doped TeO2-ZnO-La2O3 modified tellurite glasses were prepared by the conventional melt-quenching method, and the Er3+ : I-4(13/2) -> I-4(15/2) fluorescence properties have been studied for different Er3+ concentrations. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. Based on the electric dipole-dipole interaction theory, the interaction parameter, C-Er,(Er), for the migration rate of Er3+ : I-4(13/2) -> I-4(13/2) in modified tellurite glass was calculated. Finally, the concentration quenching mechanism using a model based on energy transfer and quenching by hydroxyl (OH-) groups was presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The quantum confinement effect, electronic properties, and optical properties of TiO2 nanowires in rutile structure are investigated via first-principles calculations. We calculate the size- and shape-dependent band gap of the nanowires and fit the results with the function E-g = E-g(bulk) + beta/d(alpha). We find that the quantum confinement effect becomes significant for d < 25 angstrom, and a notable anisotropy exists that arises from the anisotropy of the effective masses. We also evaluate the imaginary part of the frequency-dependent dielectric function [epsilon(2)(omega)] within the electric-dipole approximation, for both the polarization parallel [epsilon(parallel to)(2)(omega)] and the perpendicular [epsilon 1/2(omega)] to the axial (c) direction. The band structure of the nanowires is calculated, with which the fine structure of epsilon(parallel to)(2)(omega) has been analyzed.
Resumo:
Eu3+-doped zinc aluminate (ZnAl2O4) nanorods with a spinel structure were successfully synthesized via an annealing transformation of layered precursors obtained by a homogeneous coprecipitation method combined with surfactant assembly. These spinel nanorods, which consist of much finer nanofibres together with large quantities of irregular mesopores and which possess a large surface area of 93.2 m(2) g(-1) and a relatively narrow pore size distribution in the range of 6 - 20 nm, are an ideal optical host for Eu3+ luminescent centres. In this nanostructure, rather disordered surroundings induce the typical electric-dipole emission (D-5(0) --> F-7(2)) of Eu3+ to predominate and broaden.