112 resultados para Elastic materials

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A crack intersecting an interface between two dissimilar materials may advance by either penetrating through the interface or deflecting into the interface. The competition between deflection and penetration can be assessed by comparison of two ratios: (i) the ratio of the energy release rates for interface cracking and crack penetration; and (ii) the ratio of interface to material fracture energies. Residual stresses caused by thermal expansion misfit can influence the energy release rates of both the deflected and penetrating crack. This paper analyses the role of residual stresses. The results reveal that expansion misfit can be profoundly important in systems with planar interfaces (such as layered materials, thin film structures, etc.), but generally can be expected to be of little significance in fiber composites. This paper corrects an earlier result for the ratio of the energy release rate for the doubly deflected crack to that for the penetrating crack in the absence of residual stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural variation near surface of nano elastic materials is analyzed based on different potentials. The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions (attractive or repulsive) in the atomic/molecular potentials essentially governs the variation near surface (looser or tighter) and results in two opposite size effects (decreasing or increasing modulus) with decreasing size.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Dugdale-Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with Young's modulus E varying with depth z according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remains a constant, where E-0 is a referenced Young's modulus, k is the gradient exponent and c(0) is a characteristic length describing the variation rate of Young's modulus. We show that, when the size of a rigid punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent k vanishes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001-1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plane strain asymptotic fields for cracks terminating at the interface between elastic and pressure-sensitive dilatant material are investigated in this paper. Applying the stress-strain relation for the pressure-sensitive dilatant material, we have obtained an exact asymptotic solution for the plane strain tip fields for two types of cracks, one of which lies in the pressure-sensitive dilatant material and the other in the elastic material and their tips touch both the bimaterial interface. In cases, numerical results show that the singularity and the angular variations of the fields obtained depend on the material hardening exponent n, the pressure sensitivity parameter mu and geometrical parameter lambda.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In our previous paper, the expanding cavity model (ECM) and Lame solution were used to obtain an analytical expression for the scale ratio between hardness (H) to reduced modulus (E-r) and unloading work (W-u) to total work (W-t) of indentation for elastic-perfectly plastic materials. In this paper, the more general work-hardening (linear and power-law) materials are studied. Our previous conclusions that this ratio depends mainly on the conical angle of indenter, holds not only for elastic perfectly-plastic materials, but also for work-hardening materials. These results were also verified by numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An asymptotic analysis for a crack lying on the interface of a damaged plastic material and a linear elastic material is presented in this paper. The present results show that the stress distributions along the crack tip are quite similar to those with HRR singularity field and the crack faces open obviously. Material constants n, mu and mo are varied to examine their effects on the resulting stress distributions and displacement distributions in the damaged plastic region. It is found that the stress components sigma(rr), sigma(theta theta), sigma(r theta) and sigma(e) are slightly affected by the changes of material constants n, mu and m(0), but the damaged plastic region are greatly disturbed by these material parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensional and finite element analyses were used to analyze the relationship between the mechanical properties and instrumented indentation response of materials. Results revealed the existence of a functional dependence of (engineering yield strength sigma(E,y) + engineering tensile strength sigma(E,b))/Oliver & Pharr hardness on the ratio of reversible elastic work to total work obtained from an indentation test. The relationship links up the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr hardness may deviate from the true hardness when sinking in or piling up occurs. The functional relationship can further be used to estimate the SUM sigma(E,y) + sigma(E,b) according to the data of an instrumented indentation test. The sigma(E,y) + sigma(E,b) value better reflects the strength of a material compared to the hardness value alone. The method was shown to be effective when applied to aluminum alloys. The relationship can further be used to estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests in different modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have recently developed a generalized JKR model for non-slipping adhesive contact between an elastic cylinder and a stretched substrate where both tangential and normal tractions are transmitted across the contact interface. Here we extend this model to a generalized Maugis-Dugdale model by adopting a Dugdale-type adhesive interaction law to eliminate the stress singularity near the edge of the contact zone. The non-slipping Maugis-Dugdale model is expected to have a broader range of validity in comparison with the non-slipping JKR model. The solution shares a number of common features with experimentally observed behaviors of cell reorientation on a cyclically stretched substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a method is presented to calculate the plane electro-elastic fields in piezoelectric materials with multiple cracks. The cracks may be distributed randomly in locations, orientations and sizes. In the method, each crack is treated as a continuous distributed dislocations with the density function to be determined according to the conditions of external loads and crack surfaces. Some numerical examples are given to show the interacting effect among multiple cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials, under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range. The impacting tests are carried out on the pressure-shear gas gun. The loading rate achieved is dK/dt similar to 10(8) MPa m(1/2) s(-1). With the elimination of influence of the specimen boundary, the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the "momentum trap" technique. Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces. In the current study, some important phenomena have been observed. The special loading of the single pulse can bring about material damage around crack tip, and affect the material behavior, such as kinking and branching of the crack propagation. Failure mode transitions from mode I to mode II crack are observed under asymmetrical impact conditions. The mechanisms of the dynamic crack propagation are consistent with the damage failure model.