5 resultados para Elaboration
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Horseflies are economically important blood-feeding arthropods and also a nuisance for humans, and vectors for filariasis. They rely heavily on the pharmacological propriety of their saliva to get blood meat and suppress immune reactions of hosts. Little information is available on horsefly immune suppressants. By high-performance liquid chromatography (HPLC) purification coupling with pharmacological testing, an immunoregulatory peptide named immunoregulin HA has been identified and characterized from salivary glands of the horsefly of Hybomitra atriperoides (Diptera, Tabanidae). Immunoregulin HA could inhibit the secretion of interferon-gamma (IFN-gamma) and monocyte chemoattractant protein (MCP-1) and increase the secretion of interteukin-10 (IL-10) induced by lipopolysaccharide (LIPS) in rat splenocytes. IL-10 is a suppressor cytokine of T-cell proliferative and cytokine responses. IL-10 can inhibit the elaboration of pro-inflammatory cytokines. Immunoregulin HA possibly unregulated the IL-10 production to inhibit IFN-gamma and MCP-1 secretion in the current experiments. This immunosuppression may facilitate the blood feeding of this horsefly. The current works will facilitate to understand the molecular mechanisms of the ectoparasite-host relationship. 2008 Elsevier Ltd. All rights reserved.
Resumo:
Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern.
Resumo:
Two concise synthetic routes, being different in the glycosylation sequence, toward ginsenoside Ro (1) are developed. These syntheses feature the elaboration of the glucuronide residue at a later stage via the TEMPO-mediated selective oxidation and the installation of AZMB as a benzoylic neighboring participating group capable of being selectively removed afterward.
Resumo:
Since the middle of 1980's, the mechanisms of transfer of training between cognitive subskills rest on the same body of declarative knowledge has been highly concerned. The dominant theory is theory of common element (Singley & Anderson, 1989) which predict that there will be little or no transfer between subskills within the same domain when knowledge is used in different ways, even though the subskills might rest on a common body of declarative knowledge. This idea is termed as "principle of use specificity of knowledge" (Anderson, 1987). Although this principle has gained some empirical evidence from different domains such as elementary geometry (Neves & Anderson, 1981) and computer programming (McKendree & Anderson, 1987), it is challenged by some research (Pennington et al., 1991; 1995) in which substantially larger amounts of transfer of training was found between substills that rest on a shared declarative knowledge but share little procedures (production rules). Pennington et al. (1995) provided evidence that this larger amounts of transfer are due to the elaboration of declarative knowledge. Our research provide a test of these two different explanation, by considering transfer between two subskills within the domain of elementary geometry and elementary algebra respectively, and the inference of learning method ("learning from examples" and "learning from declarative-text") and subject ability (high, middle, low) on the amounts of transfer. Within the domain of elementary geometry, the two subskills of generating proofs" (GP) and "explaining proofs" (EP) which are rest on the declarative knowledge of "theorems on the characters of parallelogram" share little procedures. Within the domain of elementary algebra, the two subskills of "calculation" (C) and "simplification" (S) which are rest on the declarative knowledge of "multiplication of radical" share some more procedures. The results demonstrate that: 1. Within the domain of elementary geometry, although little transfer was found between the two subskills of GP and EP within the total subjects, different results occurred when considering the factor of subject's ability. Within the high level subjects, significant positive transfer was found from EP to GP, while little transfer was found on the opposite direction (i. e. from GP to EP). Within the low level subjects, significant positive transfer was found from EP to GP, while significant negative transfer was found on the opposite direction. For the middle level subject, little transfer was found between the two subskills. 2. Within the domain of elementary algebra, significant positive transfer was found from S to C, while significant negative transfer was found on the opposite direction (i. e. from C to S), when considering the total subjects. The same pattern of transfer occurred within the middle level subjects and low level subject. Within the high level subjects, no transfer was found between the two subskills. 3. Within theses two domains, different learning methods yield little influence on transfer of training between subskills. Apparently, these results can not be attributed to either common procedures or elaboration of declarative knowledge. A kind of synthetic inspection is essential to construct a reasonable explanation of these results which should take into account the following three elements: (1) relations between the procedures of subskills; (2) elaboration of declarative knowledge; (3) elaboration of procedural knowledge. 排Excluding the factor of subject, transfer of training between subskills can be predicted and explained by analyzing the relations between the procedures of two subskills. However, when considering some certain subjects, the explanation of transfer of training between subskills must include subjects' elaboration of declarative knowledge and procedural knowledge, especially the influence of the elaboration on performing the other subskill. The fact that different learning methods yield little influence on transfer of training between subskills can be explained by the fact that these two methods did not effect the level of declarative knowledge. Protocol analysis provided evidence to support these hypothesis. From this research, we conclude that in order to expound the mechanisms of transfer of training between cognitive subskills rest on the same body of declarative knowledge, three elements must be considered synthetically which include: (1) relations between the procedures of subskills; (2) elaboration of declarative knowledge; (3) elaboration of procedural knowledge.