3 resultados para Effet SPARC
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
随着计算机芯片的速度不断提升,器件的门限电压越来越低,因此单粒子翻转的瞬时故障越来越容易发生。特别是在太空环境中的计算机系统,在宇宙射线的影响下,瞬时故障更为频繁,系统可靠性面临更突出的考验。 为了提高计算机系统的可靠性,一般有硬件冗余容错和软件冗余容错两种方法。相对硬件容错而言,软件容错的优点是价格便宜,性价比高,配置灵活等,缺点是会带来额外的时间和空间开销,而且给程序员带来编写额外的容错代码的工作量。近来出现了一些基于编译的软件容错方法,可在编译的过程中自动加入冗余容错逻辑,但是这类编译容错方法仍然会带来显著的时间空间开销。如何在保持容错能力的同时尽量降低时空开销,是有待继续研究的问题。 本文在编译容错方向上进行了进一步研究和实现,提出利用源代码中的变量信息对冗余容错逻辑进行了剪裁,在保证容错能力的同时降低了时空开销,对内存和寄存器中的数据进行保护。具体内容有: 1. 提出了一个容错编译环境SCC的设计蓝图,构建了一个容错编译工具的远 景目标。 2. 提出了一种指令级的编译容错检测方法VarBIFT ,提供检测瞬时故障的能力。平均只利用0.0069倍的时间损耗和0.3620倍的空间损耗就将发生瞬时故障时,程序正确执行和检测到故障的概率总和平均从39.1%提升到76.9%, 3. 提出了一种指令级的编译容错恢复方法VarRIFT ,提供从瞬时故障中恢复正确数据的能力。平均只增加0.043倍的时间损耗和0.69倍的空间损耗就将发生瞬时故障时,程序仍然正确执行的概率平均从44.8%提升到了78.7%。 4. 基于开源编译器LCC,实现了上述两个编译容错方法VarBIFT 和VarRIFT 。在容错方法的实现中只修改了跟具体CPU指令相独立的中间逻辑,所以这两个实现能够方便得移植到SPARC、MIPS等其他CPU架构上。 5. 开发了一个故障注入工具,并用它测试了上述两个编译容错方法VarBIFT和VarRIFT 的容错能力。
Resumo:
小卫星以其功能集成度高、研制周期短、费用成本低等众多优势,已经成为航天领域研究的热点。而星载计算机是小卫星系统的核心,不仅在功耗、体积、重量、资源等方面有着特殊限制,而且对系统的实时性和可靠性也有着非常严格的要求。软件容错是提高系统可靠性的有效手段,但是,现有的软件容错技术并不能完全满足星载计算机的实际需要。因此,本文基于国产SPARC V8架构下的宇航级微处理器BM3803,研究开源实时多处理器操作系统RTEMS上的软件容错技术。 本文从分析空间环境和故障特点出发,针对抗SEL、抗SEU和软件缺陷处理等容错需求,在系统平台容错支持的基础上,提出一种更为全面的层次式、模块化的软件容错体系结构。首先,设计多模冗余加载和系统自检恢复,解决系统因文件损坏或硬件故障不能安全启动和正常工作的问题;其次,实现软件注入机制,解决系统在线升级和软件更新的问题;然后,提出改进异常处理和插入扩展块断言的控制流容错方法,增强RTEMS处理系统级控制流错误的能力;最后,结合实验测试和仿真结果,采用组合模型和软件可靠性模型等分析方法,对软件容错机制效能进行评估。结果表明,本文提出的软件容错结构是可行的,一定程度上提高了系统的可靠性。
Resumo:
Mechanisms underlying cognitive psychology and cerebral physiological of mental arithmetic with increasing are were studied by using behavioral methods and functional magnetic resonance imaging (fMRI). I. Studies on mechanism underlying cognitive psychology of mental arithmetic with increasing age These studies were accomplished in 172 normal subjects ranging from 20 to 79 years of age with above 12 years of education (Mean = 1.51, SD = 1.5). Five mental arithmetic tasks, "1000-1", "1000-3", "1000-7", "1000-13", "1000-17", were designed with a serial calculation in which subjects sequentially subtracted the same prime number (1, 3, 7, 13, 17) from another number 1000. The variables studied were mental arithmetic, age, working memory, and sensory-motor speed, and four studies were conducted: (1) Aging process of mental arithmetic with different difficulties, (2) mechanism of aging of mental arithmetic processing. (3) effects of working memory and sensory-motor speed on aging process of mental arithmetic, (4) model of cognitive aging of mental arithmetic, with statistical methods such as MANOVA, hierarchical multiple regression, stepwise regression analysis, structural equation modelling (SEM). The results were indicated as following: Study 1: There was an obvious interaction between age and mental arithmetic, in which reaction time (RT) increased with advancing age and more difficult mental arithmetic, and mental arithmetic efficiency (the ratio of accuracy to RT) deceased with advancing age and more difficult mental arithmetic; Mental arithmetic efficiency with different difficulties decreased in power function: Study 2: There were two mediators (latent variables) in aging process of mental arithmetic, and age had an effect on mental arithmetic with different difficulties through the two mediators; Study 3: There were obvious interactions between age and working memory, working memory and mental arithmetic; Working memory and sensory-motor speed had effects on aging process of mental arithmetic, in which the effect of working memory on aging process of mental arithmetic was about 30-50%, and the effect of sensory-motor speed on aging process of mental arithmetic was above 35%. Study 4: Age, working memory, and sensory-motor speed had effects on two latent variables (factor 1 and factor 2), then had effects on mental arithmetic with different difficulties through factor 1 which was relative to memory component, and factor 2 which relative to speed component and had an effect on factor 1 significantly. II. Functional magnetic resonance imaging study on metal arithmetic with increasing age This study was accomplished in 14 normal right-handed subjects ranging from 20 to 29 (7 subjects) and 60 to 69 (7 subjects) years of age by using functional magnetic resonance imaging apparatus, a superconductive Signa Horizon 1.5T MRI system. Two mental arithmetic tasks, "1000-3" and "1000-17", were designed with a serial calculation in which subjects sequentially subtracted the same prime number (3 or 17) from another number 1000 silently, and controlling task, "1000-0", in which subjects continually rehearsed number 1000 silently, was regarded as baseline, based on current "baseline-task" OFF-ON subtraction pattern. Original data collected by fMRI apparatus, were analyzed off-line in SUN SPARC working station by using current STIMULATE software. The analytical steps were composed of within-subject analysis, in which brain activated images about mental arithmetic with two difficulties were obtained by using t-test, and between-subject analysis, in which features of brain activation about mental arithmetic with two difficulties, the relationship between left and right hemisphere during mental arithmetic, and age differences of brain activation in young and elderly adults were examined by using non-parameter Wilcoxon test. The results were as following: