9 resultados para Edge Detection

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ordered gray-scale erosion is suggested according to the definition of hit-miss transform. Instead of using three operations, two images, and two structuring elements, the developed operation requires only one operation and one structuring element, but with three gray-scale levels. Therefore, a union of the ordered gray-scale erosions with different structuring elements can constitute a simple image algebra to program any combined image processing function. An optical parallel ordered gray-scale erosion processor is developed based on the incoherent correlation in a single channel. Experimental results are also given for an edge detection and a pattern recognition. (C) 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00306-7].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An optoelectronic implementation based on optical neighborhood operations and electronic nonlinear feedback is proposed to perform morphological image processing such as erosion, dilation, opening, closing and edge detection. Results of a numerical simulation are given and experimentally verified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文介绍了小波变换理论 ,讨论了基本小波函数的选取准则和小波变换算法 ,分析了小波变换与人工智能等其它方法的结合方式和特点 .通过介绍小波变换在信号瞬态分析、图像边沿检测、图像去噪、模式识别、数据压缩、分形信号分析等方面的应用实例 ,讨论了小波变换在处理非平稳信号和复杂图像时的优势 .最后 ,对小波变换理论的发展及其应用前景作了描述 .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对目前焊缝坐标提取方法存在精度较低,难于实现视觉引导的机器人激光焊接高速度、高精度的要求,提出一种基于Zernike正交矩的曲线焊缝位置坐标信息获取算法,该算法首先采用Zernike边缘检测算法识别焊缝边缘,然后提取出焊缝的中心线,最后计算出该中心线的亚像素坐标。通过试验验证了该算法的可行性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

介绍了Zernike矩及基于Zernike矩的图像亚像素边缘检测原理,针对Ghosal提出的基于Zernike矩的亚像素图像边缘检测算法检测出的图像存在边缘较粗及边缘亚像素定位精度低等不足,提出了一种改进算法.推导了7×7 Zernike矩模板系数,提出一种新的边缘判断依据.改进的算法能较好检测图像边缘并实现了较高的边缘定位.最后,设计了3组不同的实验.实验结果同Canny算子及Ghosal算法相比,证明了改进算法的优越性.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

基于拼板激光焊接工程中的实时检测系统,应用数学形态学中的相关图像处理技术,提出了一种新的熔池图像处理流程模型,并通过实验得到了三种清晰的熔池边缘图像,同时验证了该模型的正确性。将算法与经典算法进行比较,证明了该算法对于激光拼焊的适用性和鲁棒性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

通过对Pal.King的模糊边缘检测算法进行改进,提出了一种快速模糊边缘检测算法。该快速算法不但简化了Pal.King算法中复杂的G和G-1运算,而且通过实验,确定了Tr变换中最佳的隶属度阈值,大大地减少了迭代次数。从实验结果中可以看出,该快速算法不但提高了Pal.King算法的效率,而且具有很强的检测模糊边缘和细小边缘的能力。这种快速算法的性能优越,是一种非常实用的、高效的的图像处理算法。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies how to more effectively invert seismic data and predict reservoir under complicated sedimentary environment, complex rock physical relationships and fewer drills in offshore areas of China. Based on rock physical and seismic amplitude-preserving process, and according to depositional system and laws of hydrocarbon reservoir, in the light of feature of seismic inversion methods present applied, series methods were studied. A joint inversion technology for complex geological condition had been presented, at the same time the process and method system for reservoir prediction had been established. This method consists four key parts. 1)We presented the new conception called generalized wave impedance, established corresponding inversion process, and provided technical means for joint inversion lithology and petrophysical on complex geological condition. 2)At the aspect of high-resolution nonlinear seismic wave impedance joint inversion, this method used a multistage nonlinear seismic convolution model rather than conventional primary structure Robinson seismic convolution model, and used Caianiello neural network implement inversion. Based on the definition of multistage positive and negative wavelet, it adopted both deterministic and statistical physical mechanism, direct inversion and indirect inversion. It integrated geological knowledge, rock physical theory, well data, and seismic data, and improved the resolution and anti-noise ability of wave impedence inversion. 3)At the aspect of high-resolution nonlinear reservoir physical property joint inversion, this method used nonlinear rock physical model which introduced convolution model into the relationship between wave impedance and porosity/clay. Through multistage decomposition, it handles separately the large- and small-scale components of the impedance-porosity/clay relationships to achieve more accurate rock physical relationships. By means of bidirectional edge detection with wavelets, it uses the Caianiello neural network to finish statistical inversion with combined applications of model-based and deconvolution-based methods. The resulted joint inversion scheme can integrate seismic data, well data, rock physical theory, and geological knowledge for estimation of high-resolution petrophysical parameters. 4)At the aspect of risk assessment of lateral reservoir prediction, this method integrated the seismic lithology identification, petrophysical prediction, multi-scale decomposition of petrophysical parameters, P- and H-spectra, and the match relationship of data got from seismics, well logging and geology. It could describe the complexity of medium preferably. Through applications of the joint inversion of seismic data for lithologic and petrophysical parameters in several selected target areas, the resulted high-resolution lithologic and petrophysical sections(impedance, porosity, clay) show that the joint inversion can significantly improve the spatial description of reservoirs in data sets involving complex deposits. It proved the validity and practicality of this method adequately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the prediction of complex reservoir with high heterogeneities in lithologic and petrophysical properties, because of inexact data (e.g., information-overlapping, information-incomplete, and noise-contaminated) and ambiguous physical relationship, inversion results suffer from non-uniqueness, instability and uncertainty. Thus, the reservoir prediction technologies based on the linear assumptions are unsuited for these complex areas. Based on the limitations of conventional technologies, the thesis conducts a series of researches on various kernel problems such as inversions from band-limited seismic data, inversion resolution, inversion stability, and ambiguous physical relationship. The thesis combines deterministic, statistical and nonlinear theories of geophysics, and integrates geological information, rock physics, well data and seismic data to predict lithologic and petrophysical parameters. The joint inversion technology is suited for the areas with complex depositional environment and complex rock-physical relationship. Combining nonlinear multistage Robinson seismic convolution model with unconventional Caianiello neural network, the thesis implements the unification of the deterministic and statistical inversion. Through Robinson seismic convolution model and nonlinear self-affine transform, the deterministic inversion is implemented by establishing a deterministic relationship between seismic impedance and seismic responses. So, this can ensure inversion reliability. Furthermore, through multistage seismic wavelet (MSW)/seismic inverse wavelet (MSIW) and Caianiello neural network, the statistical inversion is implemented by establishing a statistical relationship between seismic impedance and seismic responses. Thus, this can ensure the anti-noise ability. In this thesis, direct and indirect inversion modes are alternately used to estimate and revise the impedance value. Direct inversion result is used as the initial value of indirect inversion and finally high-resolution impedance profile is achieved by indirect inversion. This largely enhances inversion precision. In the thesis, a nonlinear rock physics convolution model is adopted to establish a relationship between impedance and porosity/clay-content. Through multistage decomposition and bidirectional edge wavelet detection, it can depict more complex rock physical relationship. Moreover, it uses the Caianiello neural network to implement the combination of deterministic inversion, statistical inversion and nonlinear theory. Last, by combined applications of direct inversion based on vertical edge detection wavelet and indirect inversion based on lateral edge detection wavelet, it implements the integrative application of geological information, well data and seismic impedance for estimation of high-resolution petrophysical parameters (porosity/clay-content). These inversion results can be used to reservoir prediction and characterization. Multi-well constrains and separate-frequency inversion modes are adopted in the thesis. The analyses of these sections of lithologic and petrophysical properties show that the low-frequency sections reflect the macro structure of the strata, while the middle/high-frequency sections reflect the detailed structure of the strata. Therefore, the high-resolution sections can be used to recognize the boundary of sand body and to predict the hydrocarbon zones.