14 resultados para Edgar, Jim.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermodynamics of the displacive mechanism of plate-shaped phase alpha(1) was analyzed in beta'Cu-Zn alloys. It was proposed that the displacive transformation of the alpha(1) plate took place in the solute-depleted region formed in the parent phase during the incubation period. The thermodynamic analysis indicated that the driving force of alpha(1) transformation, Delta G, increased with the reduction of x(d), the solute concentration of the depleted region. And, Delta G could overcome-the transformation barrier with solute depletion to a certain degree. In addition, x(d) was higher than the equilibrium concentration in the phase diagram. Therefore, the shear formation of alpha(1) plate in the solute-depleted region was thermodynamically supported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: It is widely accepted that the ancestors of Native Americans arrived in the New World via Beringia approximately 10 to 30 thousand years ago (kya). However, the arrival time(s), number of expansion events, and migration routes into the Western

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaseous and particulate semi volatile carbonyls have been measured in urban air using an annular denuder sampling system. Three dicarbonyls, five aliphatic aldehydes and two hydroxy carbonyls were observed. Concentrations of other biogenic and anthropogenic volatile organic compounds (VOCs), SO2, CO, NO2 and particle concentration were also measured. Estimated gas-aerosol equilibrium constants for the carbonyls showed an inverse correlation with the concentrations of anthropogenic pollutants such as benzene, isopentane and SO2. This suggests that the increase in the fraction of non-polar anthropogenic particles in the atmosphere could change the average property of the ambient aerosols and drive the gas particle equilibrium of the carbonyls to the gas phase. This trend is uncommon in remote forest air. In this study, we examined the factors controlling the equilibrium in the polluted atmosphere and show that there is a difference in gas-aerosol partition between polluted and clean air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.