177 resultados para ELECTROLUMINESCENT POLYMERS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We developed a series of highly efficient blue electroluminescent polymers with dopant-host systems and molecular dispersion features by selecting 1,8-naphthalimide derivatives as the light blue emissive dopant units, choosing polyfluorene as the deep blue emissive polymer host and covalently attaching the dopant units to the side chain of the polymer host. The polymers' EL spectra exhibited both deep blue emission from the polymer host and light blue emission from the dopant units because of the energy transfer and charge trapping from the polymer host to the dopant units.
Resumo:
By selecting polyfluorene as the polymer host, choosing 2,1,3-benzothiadiazole derivative moieties as the red dopant units and covalently attaching 0.3 mol% of the dopant units to the side chain of the polymer host, we developed a novel series of red electroluminescent polymers of dopant/host system with molecular dispersion feature. Their EL spectra exhibited predominant red emission from the dopant units because of the energy transfer and charge trapping from the polymer backbone to the dopant units. The emission wavelength of the polymers could be tuned by modifying the chemical structures of the dopant units.
Resumo:
Two new stepladder conjugated polymers, that is, poly(7,7,15,15-tetraoctyldinaphtho[1,2-a:1',2'-g]-s-indacene) (PONSI) and poly(7,7,15,15-tetra(4-octylphenyl)dinaphtho[1,2-a:1',2'-g]-s-indacene) (PANSI) with alkyl and aryl substituents, respectively, have been synthesized and characterized. In comparison with poly(indenofluorene)s, both polymers have extended conjugation at the direction perpendicular to the polymer backbone because of the introduction of naphthalene moieties. The emission color of the polymers in film state is strongly dependent on the substituents. While PONSI emits at a maximum of 463 nm, PANSI with the same backbone but aryl substituents displays dramatically redshifted emission with a maximum at 494 nm.
Phenylene vinylene-based electroluminescent polymers with electron transport block in the main chain
Resumo:
We report a new route for the design of soluble phenylene vinylene (PV) based electroluminescent polymers bearing electron-deficient oxadizole (OXD) and triazole (TZ) moieties in the main chains with the aryloxy linkage. Both series of the PV-based polymers were prepared by Wittig reaction. By properly adjusting the OXD and/or TZ content through copolymerization, we can achieve an enhanced balance of hole- and electron injections, such that the device efficiency is significantly improved. Light-emitting diodes fabricated from P1, P2, P3, P4, P5, P6, and P7 with the configuration of Indium-Tin Oxide (ITO)/Poly (styrene sulfonic acid) doped poly (ethylenedioxythiophene) (PEDOT)/polymer/Ca/Al, emit bright green light with the maximum peak around 500 nm. For the device using the optimal polymer (P4) as emitting layer, a maximum brightness of 1300 cd/m(2) at 20 V and a maximum luminance efficiency of 0.325 cd/A can be obtained.
Resumo:
A series of seven ruthenium complexes with different ligands were synthesized and their optical, electrochemical and photoluminescent properties were characterized. Electroluminescent properties of these complexes were further evaluated using a light-emitting electrochemical cell with a configuration of indium tin oxide (ITO)/complex (100 nm)/Au (100 nm).
Resumo:
By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.
Resumo:
This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives, P1 and P2, have been successfully synthesized through the Witting-Horner reaction. The structures and properties of the monomers and the resulting polymers were characterized by using H-1 NMR, FT-IR, GPC, TGA, UV-vis absorption spectroscopy, cyclic voltammetry (CV) and electroluminescence (EL) spectroscopy
Resumo:
A novel series of white light emitting single polymers are prepared by incorporating low contents of quinacridone into the main chain of polyfluorene. This is the first report of quinacridone-containing conjugated polymer. Single layer devices (ITO/PEDOT:PSS/polymer/Ca/Al) are fabricated with these polymers. Energy transfer from fluorene segments to quinacridone unit is observed. Moreover, in the EL process, quinacridone unit can trap electrons and cannot trap holes from fluorene segments.
Resumo:
The effects of doped fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) on the charge carrier injection, transport and electroluminescence (EL) performance in polyfluorene (PFO)-based polymer light-emitting diodes (PLEDs) were investigated by steady-state current-voltage (I-V) characteristics and transient EL measurements. A red EL from DCJTI was observed and the EL performance depended strongly on the DCJTI concentration. The analysis of the steady-state I-V characteristics at different DCJTI concentrations found that three regions was shown in the I-V characteristics, and each region was controlled by different processes depending on the applied electric field. The effect of the dopant concentration on the potential-barrier height of the interface is estimated using the Fowler-Nordheim model. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the DCJTI molecules. The mobility in DCJTI: PFO changed significantly with the DCJTI concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
Novel PPV derivatives (PCA8-PV and PCA8-MEHPV) containing N-phenyl-carbazole units on the back-bone were successfully synthesized by the Wittig polycondensation of 3,6-bisformyl-N-(4-octyloxy-phenyl)carbazole with the corresponding tributyl phosphonium salts in good yields. The newly formed and dominant trans vinylene double bonds were confirmed by FT-IR and NMR spectroscopy. The polymers (with (M) over bar (w) of 6289 for PCA8-PV and 7387 for PCA8-MEHPV) were soluble in common organic solvents and displayed high thermal stability (T(g)s are 110.7 degreesC for PCA8-PV and 92.2 degreesC for PCA8-MEHPV, respectively) because of the incorporation of the N-phenyl-carbazole units. Cyclic voltammetry investigations (onsets: 0.8 V for PCA8-PV and 0.7 V for PCA8-MEHPV) suggested that the polymers possess enhanced hole injection/transport properties, which can be also attributed to the N-phenyl-carbazole units on the backbone. Both the single-layer and the double-layer light-emitting diodes (LEDs) that used the polymers as the active layer emitted a greenish-blue or bluish-green light (the maximum emissions located 494 nm for PCA8-PV and 507 nm for PCA8-MEHPV, respectively).
Resumo:
A series of copolymers (CNPFs) containing low-band-gap 1,8-naphthalimide moieties as color tuner was prepared by a Yamamoto coupling reaction of 2,7-dibromo-9,9-dioctylfluorene (DBF) and different amount of 4-(3,6-dibromocarbazol-9-yl)-N-(4'-tert-butyl-phenyl)-1,8-naphthalimide (Br-CN) (0.05-1 mol% feed ratio). The light emitting properties of the resulting copolymers showed a heavy dependence on the feed ratio. In photoluminescence (PL) studies, an efficient color tuning through the Forster energy transfer mechanism was revealed from blue to green as the increase of Br-CN content, while in electroluminescence (EL) studies, the color tuning was found to go through a charge trapping mechanism. It was found that by introduction of a very small amount of Br-CN (0.1-0.5 mol%) into polyfluorene, the emission color can be tuned from blue to pure green with Commission International de l'Echairage (CIE) coordinates being (0.21, 0.42) and (0.21, 0.48). A green emitting EL single-layer device based on CNPF containing 0.1 mol% of Br-CN showed good performances with a low turn-on voltage of 4.2 V, a brightness of 9104 cd/m(2), the maximum luminous efficiency of 2.74 cd/A and the maximum power efficiency of 1.51 lm/W.