331 resultados para ELECTRODE-REACTION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The anodic voltammetric behavior of ethambutol in the presence of various electrolytes was studied by direct-current voltammetry, differential-pluse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.039 mol/L Na2HPO4, an oxidative peak of ethambutol was obtained. The peak potential is at about 1.04 V( vs. Ag/AgCl). The height of the peak is linearly increased with the concentration of ethambutol over the range of 3 mg/Lsimilar to1000 mg/L. The method has been used for the direct determination of ethambutol in tablets. The average recovery of ethambutol in urine samples is 84.7%. Experimental results proved that the electrode reaction was diffusion controlled and irreversible.
Resumo:
The anodic voltammetric behavior of ethacridine (EAD) in the presence of various electrolytes was studied by using linear potential sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In the medium of 0.1 mol/L NaOH solution, an oxidative peak of ethaeridine was obtained. The peak potential is at about 0.40 V (vs. Ag/AgCl). The peak current is linearly increased with the concentration of ethaeridine over the range of 0.05 similar to 80 mg/L. The method has been used for the direct determination of ethacridine in injection. The relative standard deviation (n = 10) is 1.4% similar to 2.7%. The recoveries of ethacridine in urine samples are 89% similar to 95%. The mechanism of the electrode reaction was also discussed.
Resumo:
Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The anodic voltammetric behavior of inosine (I) was investigated by linar-sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L N2HPO4, inosine showed a well defined anodic peak. The peak potential was about 1.42 V (vs. Ag/AgCl). A linear relationship held between the peak current and the concentration of inosine in the rang of 5 x 10(-4) similar to 8 x 10(-2) g/L. The peak potential decreased with the decrease of the acidity of the solution. The four anodic peaks of inosine with hypoxanthine, xanthine and uric acid were obtained. Their peak potentials were about at 1.42, 1.07, 0.72 and 0.26 Vt vs. Ag/AgCl). The method has been used for the direct determination of inosine in injections. Recoveries of inosine in urine samples were about 85%. Experimental result proved that the electrode reaction was diffusion-controlled and irreversible.
Resumo:
The anodic voltammetric behavior of dipyridamole (DPM) in the presence of various electrolytes was studetd by direct-current voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.01 mol/L HCl, an oxidative peak of dipyridamole was obtained. The peak potential is at about 0.62 V(vs.Ag/AgCl). The peak current is linearly increased with the concentration of dipyridamole over the range of 0.05 similar to 10 mg/L. The method has been used for the direct determination of dipyridamole in tablets. The recoveries of dipyridamole in urine samples are 89%. Experimental results proved that the electrode reaction was diffustion controlled and irreversible.
Resumo:
The anodic voltammetric behavior of anaesthetic tetracine and its application were studied. In 0.1 mol/L HClO4 solution, the potential of anodic peak for tetracine is 1.04 V(vs. Ag/AgCl) at a glassy carbon electrode. A linear relationship between the peak height and the concentration of tetracine in the range of 5 x 10(-4) similar to 1 x 10(-1) g/L was obtained. The peak current decreases with the decreasing acidity of the solution. the mehtod has been used for the direct determination of tetracine in injections. The average recoveries of tetracine in urine samples were 98.5%. The mechanism of the electrode reaction was also discussed.
Resumo:
The voltammetric behaviour of acetophenetidin(A(1)) aminopyrine(A(2)) acetaminophenol(A(3)) and aminophenol(A(4)) was investigated by linear-sweep, differential-pulse, cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L NaOH solution, 4 high sensitivity and resolution anodic peaks were obtained. Their peak potentials are about at 0.68 V, 0.51, 0.22 and - 0.06 V( vs. Ag/AgCl). They can be used for direct determination of A(1), A(2),A(3),A(4) in samples respectively. The method is simple and rapid. The mechanism of the electrode reaction was discussed.
Resumo:
The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.
Resumo:
A fullerene/ionic-liquid composite was explored. Transmission Electron Microscopy (TEM) study showed that in the composite, C-60 mainly exists as nano-clusters, Raman spectrum proved that the composite formed only by physical Mix of C-60 and 1-Butyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), the combination did not change the chemical naturation of C-60. The electrochemical properties of the composite modified electrode, including the electrode reaction control function and the interfacial potential effect were studied.
Resumo:
It has been reported for the first time that an electrochemical gas sensor mdified with multi-walled carbon nanotubes (MWNTs) film as elctrocatalyst was fabricated for the determination of chlorine (Cl-2).Here, MWNTs and graphite were compared with each other in terms of their electrochemical properties using cyclic voltammetry. Cl-2 gas was allowed through the cathode surface of the sensor and the resulting galvanic effects were monitored. Results indicated that both of the MWNTs and graphite have the electrocatalytic activity for the reduction of Cl-2 while the MWNTs-modified electrode exhibited a higher accessible surface area in electrochemical reactions, excellent sensitivity, stable response, reproducibility and recovery for the determination of Cl-2.
Resumo:
The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.
Resumo:
The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.
Resumo:
This paper presents a microelectrode voltammetric determination of heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of 7,7,8',8 '-tetracyanoquinodimethane (TCNQ) in polyelectrolytes. The diffusion coefficients are estimated using cyclic voltammetry under linear diffusion conditions, and the heterogeneous electron transfer rate constants are obtained under mixed linear and radial diffusion in the polyelectrolyte. k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction for reduction of TCNQ are obtained. On the other hand, the dependencies of D and k(s) of TCNQ on the size and charge of the counterion are compared in the polyelectrolyte. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.
Resumo:
Eastman-AQ 55D was coated onto a carbon fiber microelectrode surface, and the resulting modified electrodes exhibited high stability. Substantial improvement in the stability was observed as a result of good adhesion and the strong binding of large hydrophobic cations of Eastman AQ 55D. The electrode reaction of meldola blue bound in the polymer film showed a reversible, one-electron transfer process. The effects of solution pH and influence of supporting electrolyte on the modified carbon fiber microelectrode are discussed. The diffusion coefficient of meldola blue in the AQ polymer film determined by chronoamperometry is 2.3 x 10(-18) cm(2) s(-1), and the heterogeneous rate constant of meldola blue at the AQ polymer film/electrode determined by normal pulse voltammetry is 3.97 x 10(-3) cms(-1).