117 resultados para ELECTROCHEMICAL TITRATION METHOD
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The self-assembled monolayer(SAM) of 11-mercaptoundecanoic acid [HS(CH2)(10)COOH] was formed on a gold electrode and the effect of the charge of end group on the electrochemical response of Fe(CN)(6)(3-) at the SAM modified electrode was studied by cyclic voltammetry. At high pH, when the -COOH groups are dissociated, the current of Fe(CN)(6)(3-) is suppressed; as the solution pH is lowered, the current of Fe(CN)(6)(3-) increases. The electrochemical titration curve was obtained by correlating the currents of Fe(CN)(6)(3-) to the different pH values of electrolyte, from which the surface pK(a) was obtained to be 3. 0+/-0. 2. Furthermore, the reason of small pK(a) value was explained using SAMs of different surface coverage.
Resumo:
A self-assembled monolayer (SAM) of 3-mercaptopropionic acid (HSCH2CH2COOH) was formed on a gold electrode. The effect of the charge of the end group on the electrochemical response of Fe(CN)(6)(3-) at the SAM modified electrode was studied by using cyclic voltammetry. At high pH, when the -COOH groups are dissociated, Fe(CN)(6)(3-) current is suppressed; as the solution pH is lowered, Fe(CN)(6)(3-) current increases. The electrochemical titration curve was obtained by correlating the currents to the different electrolyte pH values, from which the surface pK(a) was obtained to be 5.2+/-0.1. Furthermore, a calculation equation was presented to simulate the electrochemical titration. As comparison, the surface pK(a) was also measured by contact angle titration as 5.6+/-0.1. The surface pK(a) values determined by the two methods in our work are consistent and accurate.
Resumo:
Cu(OH)(2) nanowires have been synthesized by anodic oxidation of copper through a simple electrolysis process employing ionic liquid as an electrolyte. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)(2) nanostructures. A rational mechanism based on coordination self-assembly and oriented attachment is proposed for the selective formation of the polycrystalline Cu(OH)(2) nanowires. In addition, the FeOOH nanoribbons, Ni(OH)(2) nanosheets, and ZnO nanospheres were also synthesized by this route, indicative of the universality of the electrochemical route presented herein. The morphologies and structures of the synthesized nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD). Fourier transform infrared spectra (FT-IR), and thermogravimetric (TG). (C) 2007 Elsevier Masson SAS. All rights reserved
Resumo:
The acid-base equilibrium of self-assembly monolayer(SAM) of mercaptopropionic acid on gold electrode was studied by capacitance titration. The change of capacitance was due to protonation and deprotonation of the modified electrode surface. This method can be used to measure pH value in solution and capacitance of solid/liquid on SAMs surface synchronously. The shift of pK(a) was observed during the experiment as previous reports. The factors that affect the capacitance measurement were discussed in detail.
Resumo:
The ligand effects of acrylonitrile, EtOH, DMF and DMSO on the electrochemical oxidation reactions of (OEP)Co were investigated by CV monitored electrochemical titration and in - situ thin - layer spectroelectrochemical method. The formation constants of (OEP)Co(III) with these molecules were calculated. The magnitude of the values shows the order of acrylonitrile
Resumo:
Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers. (c) 2005 Elsevier B.V. All tights reserved.
Resumo:
the salt ritration metod was evaluated as a method to determine zpc in comparison with the potentiometric titration method for 26 soil with variable charge clays,i.e.,Oxisols and Ultisols from Thailand and Andisols from Japan. In addition to the determination of ST-pH0 as the zero point of charge, a calculation procedure was adopted here in order to acquire more information from the titration curve . fuithermore, for the purpose of cross-checking of zpc determined by the pt method, the st procedure was successively applied to the samples analyzed by the pt method.
Resumo:
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.
Resumo:
A general strategy has been developed for fabrication of ultrathin monolayer and multilayer composite films composed of nearly all kinds of polyoxometalates (POMs), including isopolyanions (IPAs), and heteropolyanions (HPAs). It involves stepwise adsorption between the anionic POMs and a cationic polymer on alkanethiol (cysteamine and 3-mercaptopropionic acid) self-assembled monolayers (SAMs) based on electrostatic interaction. Here a Keggin-type HPA SiMo11VO405- was chosen as a main representative to elucidate, in detail, the fabrication and characterization of the as-prepared composite films. A novel electrochemical growth method we developed for film formation involves cyclic potential sweeps over a suitable potential range in modifier solutions. It was comparatively studied with a commonly used method of immersion growth, i.e., alternately dipping a substrate into modifier solutions. Growth processes and structural characteristics of the composite films are characterized in detail by cyclic voltammetry, UV-vis spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), micro-Fourier transform infrared reflection-absorption spectroscopy (FTIR-RA), and electrochemical quartz crystal microbalance (EQCM). The electrochemical growth is proven to be more advantageous than the immersion growth. The composite films exhibit well-defined surface waves characteristic of the HPAs' redox reactions. In addition, the composite films by the electrochemical growth show a uniform structure and an excellent stability. Ion motions accompanying the redox processes of SiMo11VO405- in multilayer films are examined by in situ time-resolved EQCM and some results are first reported. The strategy used here has been successfully popularized to IPAs as well as other HPAs no matter what structure and composition they have.
Resumo:
Electrochemical alternating current (ac) method designed for the synthesis of polypyrrole (PPy) nano-tubule arrays is the topic of this paper. Two-step anodic aluminum oxide (AAO) membrane is used as a template. The morphology of PPy nano-tubules is observed by SEM and discussed. FTIR spectra exhibit that the peaks of PPy nano-tubules shift compared to conventional PPy film. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Electrospun carbon nanofiber-supported bimetallic PtxAu100-x electrocatalysts (PtxAu100-x/CNF) were prepared by electrochemical codeposition method. The composition of PtAu bimetallic nanoparticles could be controlled by varying the ratio of H2PtCl6 and HAuCl4. Scanning electron microscopy images showed that bimetallic nanoparticles had coarse surface morphology with high electrochemically active surface areas. X-ray diffraction analysis testified the formation of PtAu alloys. PtxAu100-x/CNF electrocatalysts exhibited improved electrocatalytic activities towards formic acid oxidation by providing the selectivity of the reaction via dehydrogenation pathway and suppressing the formation/adsorption of poisoning CO intermediate, indicating that PtxAu100-x/CNF is promising electrocatalyst in direct formic acid fuel cells.
Resumo:
The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.
Resumo:
The graft copolymer of high impact polystyrene (HIPS) grafted with malice anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by IR analyses and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5 wt% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with the PA6 during melt mixing the two components. The compatibility of HIPS-g-MA in the HIPS/PA6 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical properties of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA6. The tensile mechanical properties of the prepared blends were investigated and the fracture surfaces of the blends were examined by means of the scanning electron microscope (SEM). The improved adhesion in a 16%HIPS/75%PA6 blend with 9%HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA6 connecting HIPS particles was observed.
Resumo:
In this work some basic constants of extractant Sec-Octylphenoxy acetic acid (CA-12) such as solubility (S) in water, dissociation constant (K-a) in aqueous solution, dimerization constant( K-2) and distribution constant (K-d) between water and haptane have been determined by two phase titration method. The results are as follows: S = 1.40 x 10(-4) mol/L, K-a = 3.02 x 10(-4), K-2 = 3.56 x 10(2), K-d = 4.06 x 10(2) (25 +/-0.5 degreesC).