171 resultados para Dye photolysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical constants of two cyanine dye films that we prepared were measured with a RAP-1-type (RAP is rotating analyzer and polarizer) spectroscopic ellipsometer. Toward making a simplified model for the wafers of a recordable compact disk (CD-R), we give their optimization designs developed with the cyanine dye films. in addition, the dynamic storage performances of two sample disks were tested by our dynamic storage testing system. Measurement results of the sample disks were obtained to test and verify our film designs. (C) 2000 Optical Society of America. OCIS codes: 160.4890, 160.4760, 210.4810.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel metallized azo dye has been synthesized. The absorption spectra of the thin film and thermal characteristic are measured. Static optical recording properties with and without the Bi mask layer super-resolution near-field structure (Super-RENS) of the metal-azo dye are investigated. The results show that the metal-azo dye film has a broad absorbance band in the region of 450-650 nm and the maximum absorbance wavelength is located at 603 nm. It is also found that the new metallized azo dye occupies excellent thermal stability, initiatory decomposition temperature is at 270 degrees C and the mass loss is about 48% in a narrow temperature region (15 degrees C). The complex refractive index N (N = n + ik) is measured. High refractive index (n = 2.45) and low extinction coefficient (k = 0.2) at the recording wavelength 650nm are attained. Static optical recording tests with and without Super-RENS are carried out using a 650nm semiconductor diode laser with recording power of 7mW and laser pulse duration of 200ns. The AFM images show that the diameter of recording mark on the dye film with the Bi mask layer is reduced about 42%, compared to that of recorded mark on the dye film without Super-RENS. It is indicated that Bi can well performed as a mask layer of the dye recording layer and the metallized azo dye can be a promising candidate for recording media with the super-resolution near-field structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiazolyl heterocyclic azo dye and its metal (Ni2+, Co2+)-azo complexes were synthesized. Their structures were confirmed by elemental analysis, UV-VIS absorption spectra, FT-IR, H-1 NMR and MALDI-MS. The thermal properties of metal complexes were studied by DSC-TGA. The optical constants (complex refractive index N=n + ik) and thickness of the complex thin films on polished single-crystal silicon substrates were investigated on a scanning ellipsometer. Results indicate that thiazolyl metal-azo complexes possess good optical and thermal properties. They would be a promising recording medium candidate for NVD with the Super-resolution near field structure (Super-RENS) technology. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of zirconia films doped with rhodamine 6G and oxazine 725 by the sol-gel process were investigated using spectroscopic ellipsometry (SE). Accurate refractive index n and the extinction coefficient k were determined using a three-oscillator classical Lorentz model in the wavelength range of 300-800 nm. The derived refractive index of dye-doped films exhibited anomalous dispersion in the absorption region. Wavelength tunable output lasing action yellow and near-infrared wavelength region was achieved by DFB configuration using zirconia films doped with R6G and oxazine 725. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the use of partial least squares (PLS) method and 27 quantum chemical descriptors computed by PM3 Hamiltonian, a statistically significant QSPR were obtained for direct photolysis quantum yields (Y) of selected Polychlorinated dibenzo-p-dioxins (PCDDs). The QSPR can be used for prediction. The direct photolysis quantum yields of the PCDDs are dependent on the number of chlorine atoms bonded with the parent structures, the character of the carbon-oxygen bonds, and molecular polarity. Increasing bulkness and polarity of PCDDs lead to decrease of log Y values. Increasing the frontier molecular orbital energies (E-lumo and E-homo) and heat of formation (HOF) values leads to increase of log Y values. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Often it is assumed that absorbance decays in photochromic materials with the time dependence of the photochemical kinetics, i.e. exponentially for first order kinetics. Although this may hold in the limiting case of vanishing absorbance, deviations are to be expected for realistic samples, because the local photochemical kinetics slows down with increasing initial absorption and penetration depth of the radiation. We discuss the theory of the kinetics of initially homogeneous photochromic samples and derive analytical solutions. In extension of Tomlinson's theory we find an analytical solution that holds with good approximation even for samples that exhibit a small residual absorption in the saturation limit. The theoretical time dependence of the absorbance originating from photochemical first order kinetics of dye-doped systems is compared with experimental data published by Lafond et al. for fulgides doped in different polymer matrices. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.