2 resultados para Dutch newspapers.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levels of the heavy metals Cd, Cr, Cu, Pb and Zn, in both the dissolved and particulate phase, were determined in two sampling campaigns in August 1978 and August 1984 in the Dutch Rhine-Meuse (Maas) Delta. Besides the heavy metal concentrations, other important parameters were determined, such as the concentrations of seston, chlorophyll and nutrients. The concentrations of dissolved Cd and of Cd, Pb and Cu in particulate matter were much higher in 1978 than in 1984, especially for Cd. This may be due to the strict regulations implemented in Germany to reduce the pollution of natural waters by heavy metals. The correlation between the high Cd content and the chlorophyll content is explained by the binding of Cd to living and dead organisms. The distribution of the metals between the dissolved and the particulate phase, indicated by the distribution quotient Kd , increases from low values of Kd for Cu and Zn, to higher values for Cd and Cr, and the highest values for Pb. The differences are explained by various binding forms of each of these metals in natural waters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.