5 resultados para Dry Density

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Longgang maar area in Northern China is a sensitive region to the change of Asian summer monsoon, and also an important area to understand the dynamic mechanism of global paleoclimate and paleoenvironment changes. The grain-size and major element analyses have been carried out on the samples of the core from Erlongwan maar for reconstruction of high –resolution paleoenvironment change in Northeast China. Subsampling was done by 1cm interval for the upper 19.39m. Connecting multi-proxies (including,dry density, total organic carbon, etc.), we have acquired the following conclusions: 1、 the coarse fraction in grain size reflects the intensity of surface flow, and thus the intensity of monsoon rainfall in the region. 2、 the 19.39-m-long sediment covering the past 33ka, can be divided into 3 periods: The last glacial stage (33-18.5ka B.P.):summer monsoon rainfall was low, temperature was minimum and climatic deteriorated. The last deglaciation (18.5-10 ka B.P.): temperature rose and surface water inflow increased. But it experienced a period, a Younger Dryas-like climatic deterioration. Holocene(10-0 ka B.P.):summer monsoon rainfall reached maxima and varied at century scale and major millennial scale. 3、 the climatic variability in the whole Holocene is positively correlated with Atlantic ice-rafting events and there is an influence of sunspot activity in the late Holocene

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The unsaturated expansive soil is a hotspot and difficulty in soil mechanics inland and outland. The expansive soil in our China is one of the widest in distributing and greatest in area, and the disaster of expansive soil happens continually as a result. The soil mechanics test, monitor, numerical simulation and engineering practice are used to research swell and shrinkage characteristic, edge strength characteristic and unsaturated strength characteristic of Mengzi expansive soil. The seep and stability of the slope for expansive soil associated with fissure are analyzed and two kinds of new technique are put forward to be used in expansive soil area, based on disaster mechnics proposed of the slope.The technique of reinforcement in road embankment is optimized also. Associated with engineering geology research of Mengzi expansive soil, mineral composition, chemical composition, specific area and cation content, dissolubility salt and agglutinate, microcosmic fabric characteristic, cause of formation and atmosphere effect depth are analyzed to explain the intrinsic cause and essence of swell and shrinkage for expansive soil. The rule between swell-shrinkage and initial state, namely initial water content, initial dry density and initial pressure, can be used to construction control. Does Response model is fit to simulate the rule, based on ternary regression analysis. It has great meaning to expansive soil engineering in area with salt or alkali. The mechanics under CD, CU and GCU of expansive soil is researched by edge surface theory to explain the remarkable effect of consolidation pressure, initial dry density, initial water content, cut velocity, drainage and reinforcement to the edge strength characteristic. The infirm hardening stress strain curves can be fitted with hyperbola model and the infirm softening curves can be fitted with exponential model. The normalization theory can be used to reveal the intrinsic unity of the otherness which is brought by different methods to the shear strength of the same kinds of samples. The unsaturated strain softening characteristic and strength envelope of remolding samples are researched by triaxial shear test based on suction controlled, the result of which is simulated by exponential function. The strength parameters of the unsaturated samples are obtained to be used in the unsaturated seep associated with rainfall. The elasticity and plasticity characters of expansive soil are researched to attain the model parameters by using modified G-A model. The humidification destroy characteristic of expansive soil is discussed to research the disaster mechanism of the slope with the back pressure increasing and suction decreasing under bias pressure consolidation. The indoor and outdoor SWCCs are measured to research the effect factors and the rule between different stress and filling environment. The moisture absorption curves can express the relationship between suction and water content in locale. The SWCCs of Mengzi expansive soil are measured by GDS stress path trixial system. The unsaturated infiltration function is gained to research seep and stability of the slope of expansive soil. The rainfall infiltration and ability of slope considering multifarious factors are studied by analyzing fissure cause of Mengzi expansive soil. The mechanism of the slope disaster is brought forward by the double controlling effect between suction and fissure. Two new kinds of technique are put forward to resolve disaster of expansive soil and the technique of reinforcement on embankment is optimized, which gives a useful help to solving engineering trouble.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen permeation behaviours of high strength steel 35CrMo under different cyclic wet-dry conditions have been investigated by using Devanathan-Stachurski's technique. Four electrolytes were used: distilled water, seawater, seawater containing 1500 ppm H2S and seawater containing 0.03 mol L-1 SO2. The corrosion weight loss of 35CrMo in the wet-dry cycles was measured simultaneously. The experimental results show that hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles and the permeation current density during a wet-dry cycle showed a maximum during the drying process. The hydrogen permeation was obviously promoted by Cl- ions, H2S and SO2. The hydrogen permeation in the real marine atmosphere has also been investigated. There is a clear correlation between the amount of hydrogen permeated and the corrosion weight losses. Results show the importance of hydrogen permeation that merits further investigation.